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Introduction
A mathematician, a musician, and a psychologist walked into a bar . . .

Several years ago, before I had any thoughts of writing a book on the history of

symbols, I had a conversation with a few colleagues at the Cava Turacciolo, a little

wine bar in the village of Bellagio on Lake Como. ¿e psychologist declared that

symbols had been around long before humans had a verbal language, and that they

are at the roots of the most basic and primitive thoughts. ¿e musician pointed out

that modern musical notation is mostly attributed to one Benedictine monk Guido

d’Arezzo, who lived at the turn of the �rst millennium, but that a more primitive

form of symbol notation goes almost as far back as Phoenician writing. I, the math-

ematician, astonishedmy friends by revealing that, other than numerals, mathemat-

ical symbols—even algebraic equations—are relatively recent creations, and that al-

most all mathematical expressions were rhetorical before the end of the � eenth

century.

“What?!” the psychologist snapped. “What about multiplication? You mean to

tell us that there was no symbol for ‘times’?”

“Not before the sixteenth. . .maybe even seventeenth century.”

“And equality? What about ‘equals’? the musician asked.

“Not before. . .oh. . . the sixteenth century.”

“But surely Euclid must have had a symbol for addition,” said the psychologist.

“What about the Pythagorean theorem, that thing about adding the squares of the

sides of a right triangle?”

Introduction ix
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“Nope, . . .no symbol for ‘plus’ before the twel h century!”

A contemplative silence followed as we sni�ed and sipped expensive Barolo.

As it turned out, I was not correct. And far, far back in the eighteenth century

bc, the Egyptians had their hieroglyphical indications of addition and subtraction

in glyphs of men running toward or away from amounts to be respectively added or

subtracted. And from time to time, writers of mathematical texts had ventured into

symbolic expression. So there are instances when they experimented with graphic

marks to represent words or even whole phrases. ¿e Bakhshâlî manuscript of the

second century bc records negative numbers indicated by a symbol that looks like

our plus sign. In the third century, Diophantus of Alexandria used a Greek letter

to designate the unknown and an arrow-like �gure pointing upward to indicate

subtraction. In the seventh century, the Indian mathematician Brahmagupta used

a small black dot to introduce the new number we now call “zero.” And symbols

were timidly beginning to �nd their way into mathematics by the second half of the

� eenth century. Of course, for ages, there have been the symbols that we use to

designate whole positive numbers.

¿at night at the enoteca, I didn’t know that my estimate for the adoption of

symbols was premature by several centuries. Sure, Diophantus in the third century

had his fewdesignations; however, before the twel h century, symbolswere not used

for operational manipulation at the symbolic level—not, that is, for purely symbolic

operations on equations. Perhaps I should have pushed the edge of astonishment

to claim, correctly, that most mathematical expressions were rhetorical before the

sixteenth century.

Ever since that conversation, I have found that most people are amazed to learn

that mathematics notation did not become really symbolic before the sixteenth cen-

tury.Wemust also wonder:What was gained by algebra taking on a symbolic form?

What was lost?

Traced to their roots, symbols are a means of perceiving, recognizing, and cre-

ating meaning out of patterns and con�gurations drawn from material appearance

or communication.

x Introduction



“Mazur” — // — : — page xi — #

¿e word “symbol” comes from the Greek word for “token,” or “token of iden-

tity,” which is a combination of two word-roots, sum (“together”) and the verb ballo

(“to throw”). Amore relaxed interpretationwould be “to put together.” Its etymology

comes from an ancient way of proving one’s identity or one’s relationship to another.

A stick or bone would be broken in two, and each person in the relationship would

be given one piece. To verify the relationship, the pieces would have to �t together

perfectly.

On a deeper level, the word “symbol” suggests that, when the familiar is thrown

together with the unfamiliar, something new is created. Or, to put it another way,

when an unconscious idea �ts a conscious one, a newmeaning emerges.¿e symbol

is exactly that: meaning derived from connections of conscious and unconscious

thoughts.

Can mathematical symbols do that? Are they meant to do that? Perhaps there

should be a distinction between symbols and notation. Notations come from short-

hand, abbreviations of terms. If symbols are notations that provide us with subcon-

scious thoughts, consider “+.” Alone, it is a notation, born simply from the short-

hand for the Latinword et. Yes, it comes from the “t” in et.We �nd it in when Jo-

hannesWidmannwrote Behende und hubsche Rechenung au� allen Kau�manscha�

(Nimble and neat calculation in all trades). It was meant to denote a mathematical

operation as well as the word “and.”

Used in an arithmetic statement such as  +  = , the “+” merely tells us that

 and  more make . But in the context of an algebraic statement such as x +
xy+ y it generally means more than just “x and xyand y.”¿emathematician

sees the +’s as the glue to form the perfect square (x + y). Now surely the same

mathematician would just as well see the “and” as the glue. Perhaps it may take a

few more seconds to recognize the perfect square, but familiar symbols habitually

provide useful associations when we are looking at one object while knowing that it

has another useful form.

A purist approach would be to distinguish symbolic representation from simple

notation. I have a more generous slant; numerals and all nonliteral operational no-

Introduction xi
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tation are di�erent, but still considered symbols, for they represent things that they

do not resemble.

Read the statement  +  =  again. It is a complete sentence in mathematics,

with nouns, a conjunction, and a verb. It took you about a second to read it and

continue on. Unaware of your fact-checking processes, you believe it for many rea-

sons, starting fromwhat you were told as a young child and ending with amountain

of corroborating evidence from years of experience. You didn’t have to consciously

search through your mental library of truthful facts to know that it is true.

Yet there is a distinct di�erence between the writer’s art and themathematician’s.

Whereas the writer is at liberty to use symbols in ways that contradict experience in

order to jolt emotions or to create states of mind with deep-rooted meanings from

a personal life’s journey, the mathematician cannot compose contradictions, aside

from the standard argument that establishes a proof by contradiction.Mathematical

symbols have a de�nite initial purpose: to tidily package complex information in

order to facilitate understanding.

Writers have more freedom than mathematicians. Literary symbols may be un-

der the shackles of myth and culture, but they are used inmany ways. Emily Dickin-

son never uses theword “snake” in her poem “ANarrowFellow in theGrass,” thereby

avoiding direct connections with evil, sneakiness, and danger, though hinting all the

same. Joseph Conrad invokes all the connotations of slithering, sneaky evil inHeart

of Darkness when describing the Congo River as “an immense snake uncoiled, with

its head in the sea.” It is also possible that a writer may use the word “snake” in-

nocently, in no way meaning it as something unsuspected, cra y, or dangerous. It

could be simply a descriptive expression, as in “the river wound around its banks

like a snake.”¿e writer may intend to invoke an image in isolation from its cultural

baggage. ¿is is tough—perhaps impossible—to do with words or expressions that

are so o en used �guratively.

Mathematicians use a lemma (a minor theorem used as a stepping stone to

prove a major theorem) called the “snake lemma,” which involves a �gure called

the “snake diagram”—it doesn’t mean that there is anything sinister, cra y, or dan-
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gerous within, but rather that the �gure just happens to look like a snake, again just

a graphic description.

Human-made symbols of mathematics are distinct from the culturally �exible,

emotional symbols found in music or from the metaphorical symbols found in po-

ems. However, some also tend to evoke subliminal, sharply focused perceptions and

connections. ¿ey might also transfer metaphorical thoughts capable of conveying

meaning through similarity, analogy, and resemblance, and hence are as capable of

such transferences as words on a page.

In reading an algebraic expression, the experienced mathematical mind leaps

through an immense number of connections in relatively short neurotransmitter

lag times.

Take the example of π, the symbol that every schoolchild has heard of. As a sym-

bol, it is a sensory expression of thought that awakens intimations through associ-

ations. By de�nition, it means a speci�c ratio, the circumference of a circle divided

by its diameter. As a number, it is approximately equal to .. It masquerades in

many forms. For example, it appears as the in�nite series

π = 


− 


+ 


− 


+ 


� ,

or the in�nite product

π =  ċ 

ċ 

ċ 

ċ 

ċ 

ċ 

ċ 

ċ 

� ,

or the in�nite fraction

π =


 +



 +



 +



 + . . .

.

It frequently appears in both analytical and number theoretic computations.

When she sees π in an equation, the savvy reader automatically knows that some-

thing circular is lurking behind. So the symbol (a relatively modern one, of course)
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does not fool the mathematician who is familiar with its many disguises that unin-

tentionally drag along in the mind to play into imagination long a er the symbol

was read.

Here is another disguise of π: Consider a river �owing in uniformly erodible

sand under the in�uence of a gentle slope.¿eory predicts that over time the river’s

actual length divided by the straight-line distance between its beginning and end

will tend toward π. If you guessed that the circle might be a cause, you would be

right.

¿e physicist EugeneWigner gives an apt story in his celebrated essay, “¿eUn-

reasonable E�ectiveness ofMathematics in theNatural Sciences.”

Astatistician tries

to explain themeaning of the symbols in a reprint about population trends that used

the Gaussian distribution. “And what is this symbol here?” the friend asked.

“Oh,” said the statistician. “¿is is pi.”

“What is that?”

“¿e ratio of the circumference of the circle to its diameter.”

“Well, now, surely the population has nothing to do with the circumference of

the circle.”

Wigner’s point in telling this story is to show us thatmathematical concepts turn

up in surprisingly unexpected circumstances such as river lengths and population

trends. Of course, he was more concerned with understanding the reasons for the

unexpected connections betweenmathematics and the physical world, but his story

also points to the question of why such concepts turn up in unexpected ways within

pure mathematics itself.


¿e symbol π had nomeaning in Euclid’s Elements (other than its being the six-

teenth letter of the ancient Greek alphabet), even though the Elements contained the

proof of the hard-to-prove fact that the areas of any two circles are to one another as

the squares on their diameter.

¿e exceptionality of Greek mathematical thinking

is in conceiving that there are universal truths that could be proven: that any circle

is bisected by any of its diameters, that the sum of angles in any triangle is always the

same constant number, that only �ve regular solids can exist in three dimensions. In
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book II, proposition , Euclid showed us how to prove what we might today think

of as simple algebraic identities, such as (a + b) = a + b + ab, but you will not
�nd any algebraic symbols indicating powers (those little raised numbers that tell

how many times to multiply a number by itself) or addition in his proposition or

proof because his statements and proofs were, on the one hand, geometrical and, on

the other, entirely in narrative form.

Diophantus of Alexandria was born more than �ve hundred years a er Euclid.

His great work, Arithmetica, gave us something closer to algebraic solutions of spe-

cial linear equations in two unknowns, such as x + y = , x − y = . He did this
not by using the full power of symbols, but rather by syncopated notation—that is,

by the relatively common practice of the time: omitting letters from the middle of

words. So his work never fully escaped from verbal exposition.

It was the �rst step

away from expressing mathematics in ordinary language.

It is possible to do all of mathematics without symbols. In general, articles of

law contain no symbols other than legalese such as “appurtenances,” “aforesaid,”

“behoove”—words that few people would dream of using in anything other than

a legal document. By tradition, and surely by design, law has not taken the symbolic

road to precision. Words in a natural language such as English or Latin can present

tight meaning, but almost never ironclad precision the way symbolic algebra can.

Instead, written law relies heavily on intent, and expects loopholes to be found by

those clever people who use them.

Imagine what mathematics would be like if it were still entirely rhetorical, with-

out its abundance of cleverly designed symbols. Take a passage in al-Khwārizmı̄’s

Algebra (ca.  ad) where even the numbers in the text are expressed as words:

If a person puts such a question to you as: “I have divided ten into two

parts, and multiplying one of these by the other the result was twenty-

one;” then you know that one of the parts is thing, and the other is ten

minus thing.


We would write this simply as: x( − x) = .
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¿e language of the solution, as al-Khwārizmı̄ wrote it, was speci�c to the ques-

tion. ¿ere may have been a routine process, some algorithm, lurking behind the

phrasing, but it would have taken work to bring it out, since al-Khwārizmı̄’sAlgebra

is not particularly representative of the mathematics of his period.

Privately things may have been di�erent. ¿inking and scratch work probably

would have gone through dra s, just as they do today. I have no way of knowing for

sure, but I suspect that the solution was �rst probed on some sort of a dust board

using some sort of personal notation, and a erward composed rhetorically for text

presentation.

¿e sixth-century proli�c Indian mathematician-astronomer Aryabhatta used

letters to represent unknowns. And the seventh-century Indian mathematician-

astronomer Brahmagupta—who, incidentally, was the �rst writer to use zero as a

number—used abbreviations for squares and square roots and for each of several

unknowns occurring in special problems. Both Aryabhatta and Brahmagupta wrote

in verse, and so whatever symbolism they used had to �t the meter. On seeing a dot,

the reader would have to read the word for dot. ¿is put limitations of the use of

symbols.

A negative number was distinguished by a dot, and fractions were writ-

ten just as we do, only without the bar between numerator and denominator.

Even as late as the early sixteenth century, mathematics writing in Europe was

still essentially rhetorical, although for some countries certain frequently usedwords

had been abbreviated for centuries. ¿e abbreviations became abbreviated, and by

the next century, through the writings of François Viète, Robert Recorde, Simon

Stevin, and eventually Descartes, those abbreviations became so compacted that all

the once-apparent connections to their origins became lost forever.

In mathematics, the symbolic form of a rhetorical statement is more than just

convenient shorthand. First, it is not speci�c to any particular language; almost all

languages of the world use the same notation, though possibly in di�erent scriptory

forms. Second, and perhaps most importantly, it helps the mind to transcend the

ambiguities and misinterpretations dragged along by written words in natural lan-

guage. It permits the mind to li particular statements to their general form. For
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example, the rhetorical expression subtract twice an unknown from the square of the

unknown and add onemay be written as x− x+ . ¿e symbolic expression might

suggest amore collective notion of the expression, as we are perhapsmentally drawn

from the individuality of x − x +  to the general quadratic form ax + bx + c. We

conceive of x − x +  merely as a representative of a species.
By Descartes’s time at the turn of the seventeenth century, rhetorical statements

such as

¿e square of the sum of an unknown quantity and a number equals

the sum of the squares of the unknown and the number, augmented by

twice the product of the unknown and the number.

werewritten almost completely inmodern symbolic form,with the symbol �stand-
ing for equality:

(x + a) �x + a + ax

¿e symbol had �nally arrived to liberate algebra from the informality of the word.

As with almost all advances, something was lost.We conveymodernmathemat-

ics mostly through symbolic packages, briefcases (sometimes suitcases) of informa-

tion marked by symbols. And o en those briefcases are like Russian matrioshka

dolls, collections of nested briefcases, each depending on the symbols of the next

smallermatrioshka.

¿ere is that old joke about joke tellers: A guy walks into a bar and hears some

old-timers sitting around telling jokes. One of them calls out, “Fi y-seven!” and the

others roar with laughter. Another yells, “Eighty-two!” and again, they all laugh.

So the guy asks the bartender, “What’s going on?”

¿e bartender answers, “Oh, they’ve been hanging around here together telling

jokes for so long that they catalogued all their jokes by number. All they need to do

to tell a joke is to call out the number. It saves time.”

¿e new fellow says, “¿at’s clever! I’ll try that.”

So the guy turns to the old-timers and yells, “Twenty-two!”

Everybody just looks at him. Nobody laughs.

Introduction xvii
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Embarrassed, he sits down, and asks the bartender, “Why didn’t anyone laugh?”

¿e bartender says, “Well, son, you just didn’t tell it right . . . ”

Mathematicians o en communicate in sequentially symbolic messages, a code,

unintelligible to the uninitiated who have no keys to unlock those briefcases full of

meaning.¿ey lose the public in a mire of marks, signs, and symbols that are harder

to learn than any natural language humans have ever created.

More o en, in speaking, for the sake of comprehension, they relax their airtight

arguments at the expense ofmildly slackening absolute proof.¿ey rely onwhat one

may call a “generosity of verbal semantics,” an understanding of each other through

a shared essence of professional expertise and experience independent of culture.

However, even with a generosity of verbal semantics, something beyond ab-

solute proof is lost. Mathematics, even applied mathematics, physics, and chem-

istry, can be done without reference to any physically imaginable object other than

a graphic symbol. So the di�erence between the physicist’s rhetorical exposition and

the mathematician’s is one of conceptualization.

¿at might be why physicists have an easier time communicating with the gen-

eral public; they are able to give us accounts of “stu�” in this world. ¿eir stu� may

be galaxies, billiard balls, atoms, elementary particles of matter and strings, but even

those imperceptible strings that are smaller than 
–

of ameter in ten-dimensional

space are imagined as stu�. Even electric and magnetic �elds can be imagined as

stu�. When the physicist writes a book for a general audience, she starts with the

advantage of knowing that every one of her readers will have experience with some

of the objects in her language, for even hermost in�nitesimal objects are imaginable

“things.”

Amathematician’s elements are somewhatmore intangible.¿e symbol that rep-

resents a speci�c number N is more than just a notational convenience to refer to

an indeterminate number. ¿ese days it represents an object in the mind with lit-

tle cognate reference to the world—in other words, the N is a “being” in the mind

without a de�nite “being” in the world. So the nonphysical object has an ontology

through cognition.¿emind processes a modern understanding of a number—say,
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three—just as it does for any abstraction, by climbing a few rungs of increasing gen-

erality, starting at a de�nite number of things within the human experience: three

sheep in the �eld, three sheep, three living things, three things, . . . all the way up to

“three-ness.” Imagining physical objects decreases as generality increases.¿emath-

ematical symbol, therefore, is a visual anchor that helps the mind through the pro-

cess of grasping the general through the particular.

¿is book traces the origins and evolution of established symbols in mathemat-

ics, starting with the counting numbers and ending with the primary operators of

modern mathematics. It is chie�y a history of mathematical symbols; however, it is

also an exploration of how symbols a�ect mathematical thought, and of how they

invoke a wide range of enduring subconscious inspirations.

It is arranged in three parts to separate the development of numerals from the

development of algebra. ¿is was a di�cult authoring decision based on �tting an

acceptable symbol de�nition into the broader scope of notation, which includes that

of both numerals and algebra. Each part has its separate chronology. Parts  and 

are quasi-independent, but the reader should be aware that at early stages of de-

velopment, both numerals and algebraic symbols progressed along chronologically

entangled lines.
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Definitions
sym•bol \"simb e

l\ n-s: Something that stands for or suggests something

else by reason of relationship, association, convention, or accidental but

not intentional resemblance.


“Symbol” is a complex word. Webster’s de�nition does not quite �t the collective

experience of its use. For a more suitable �t to this book, we must extend the pre-

ceding de�nition to require a symbol to also be, or to have been, something cultural

and nonarbitrary, something representative of an object or a concept that it does

not resemble in sound or in look, and something that gives no preconception of the

thing it resembles.

al·ge·bra \"al-j e-br e\ n-s: A branch of mathematics in which arithmetic

relations are generalized and explored by using letter symbols to repre-

sent numbers, variable quantities, or othermath entities (as vectors and

matrices), the letter symbols being combined, esp. in forming equations

in accordance with assigned rules.


¿ese days, the word “algebra” has a much broader meaning that spills into gener-

alized rules of addition and multiplication and structural relationships between all

sorts of mathematical objects. However, since this book is mostly about the symbols

of pre–eighteenth-century algebra, Webster’s de�nition is appropriate.

Definitions xxi
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Note on the Illustrations
Primary sources illuminating the history of symbols are discussed throughout the

book and, in some cases, represented as illustrations. Although print-quality scans

were available for some of the original manuscripts illustrated in this book, for tech-

nical reasons it was necessary to typeset the textual �gures on pages , , , ,

, and .

Note on the Illustrations xxiii
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Part 1

Numerals
Signi�cant Manuscripts and Initiators

BAKHSHÂLÎ MANUSCRIPT (date in dispute: –). Indian.

Shows that the Indians had a place-value system in place before  ad.

BISHOP SEVERUS SEBOKHT (ca. –ca. ). Syrian. Science and philosophy

writer.

Author of the earliest known extant reference to Hindu-Arabic numerals outside

of India.

BRAHMAGUPTA (–). Indian. Mathematician-astronomer.

His Brahmasphutasiddhanta () has the �rst known use of zero (a small black

dot) as a number, not just as a placeholder.

HARUN AL-RASHID (th century). Persian. Caliph.

Founded the House of Wisdom in Baghdad, a library and translation center that

contained manuscripts of mathematics and philosophy translated into Arabic

from many other languages.

AL-KHWĀRIZMĪ (ca. –ca. ). Persian.Mathematician-astronomer-geographer.

Scholar in the House of Wisdom. Wrote the Compendious Book on Calculation

by Completion and Balancing (Algebra),  ad.

MAS’ÚDÌ (Abu’l-Hasan ‘Ali) (ca. –). Mesopotamian. Arab historian,

adventurer.

Numerals 1
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His Meadows of Gold (), a thirty-volume collection of histories of Persians,

Hindus, Jews, Romans, and others gives a dependable tenth-century account of

the nine Hindu-Arabic numerals.

GERBERT D’AURILLAC (Sylvester II) (–) French. Pope.

Studied and taught mathematics and designed a counting board, called the Ger-

bertian abacus, with a place-value system using Roman numerals.

CODEX VIGILANUS MANUSCRIPT (ca. ). Spanish.

An illuminated manuscript containing the �rst Arabic numerals in a Western

manuscript.

RABBI ABRAHAMBENEZRA (–). Spanish. Astronomer, mathematician.

His Sefer ha-Ekhand (Book of theUnit) described theHindu-Arabic number sym-

bols, and his Sefer-ha-Mispar (Book of the Number) described the place-value

system and zero.

ROBERT OF CHESTER (th century). English. Arabist.

Translated al-Khwārizmı̄’s Algebra into Latin in ca. , but was discovered only

in the nineteenth century. Al-Khwārizmı̄’s Algebra contains one of the earliest

known introductions to the Hindu-Arabic numeral system.

JOHANNES HISPALENSIS (also John of Seville) (th century). Spanish. Translator.

His Arithmeticae practicae in libro algorithms (Book of Algorithms on Practical

Arithmetic) contains the earliest known Western description of Hindu-Arabic

place-value notation.

LEONARDO PISANO BIGOLLO (Fibonacci) (ca. –ca. ). Italian. Mathe-

matician.

His Liber abbaci () used the Hindu-Arabic system and was written in the

vernacular for Italian tradesmen.

ALEXANDER DE VILLA DEI (ca. –ca. ). French Minorite friar and poet.

His Carmen de Algorismo, written in Latin verse, explained the methods of com-

putation involving Indian numerals including zero.

JOHANNES DE SACROBOSCO (–). English. Astronomer, monk.

HisAlgorismuswas a European best-selling textbook onHindu-Arabic numerals

and how to use them in calculations.

2 Part 1
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Chapter 1

Curious Beginnings

No one knows precisely when humans �rst began to deliberately leave marks for

communication with others. Surely it was in that misty period of time, when herds

of woolly mammoth freely wandered Europe, and all sorts of living creatures were

following the northward spread of food and vegetation from the plains of Africa.


¿e ice of Europe had been receding for centuries in the slow ending of one of the

great climate changes of all time.Most of the human populationwas still in southern

Asia.


¿atwas between � y and thirty thousand years ago, when humans had to think

about day-to-day necessities for survival. Deep ontological thoughts—such aswhere

did I come from? andwhy do I exist at all?—that could be shaped only by strength of

language and metaphor potential were not likely. Even without a richly developed

language, they must have had our natural urge to tell stories, the impulse to relay

to others those pictures in the mind. ¿ese may have been fancies about thunder-

storms, darkness, beasts, or even the puzzlement of dreams, but such is the nour-

ishment needed to push language further.


As language developed, so did contemplations of the experience of being alive.

¿e twentieth-century preeminent folklorist Joseph Campbell told us that humans

have always been “seeking an experience of being alive so that the life experiences

that we have on the purely physical plane will have resonances within, that are those

of our own innermost being and reality, so that we actually feel the rapture of being

alive.”
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Humans could have survived in their severe, menacing environments by some

combination of instinct and intelligence, just as most mammals did and still do,

without the spark exploding natural human language.¿ey could have survived the

freezing winters and scorching summers in an oral world without a written record,

in a world withoutmarks, signs, symbols, or paintings.Monkeys did; so did caribou.

What possessed those Neolithic cave painters to ignore the dangers of daily

life while they sat, etched, scribbled, or painted? More than , years ago, the

dwellers near the Cave of El Castillo in Spain bothered to stencil their hands against

cave walls by blowing pigment.

For tens of thousands of years, humans had been

leaving signi�cationmarks in their surroundings, gouges on trees, footprints in hard

mud, scratches in skin, and even pigments on rocks.

A simple mark can represent a thought, indicate a plan, or record a histori-

cal event. Yet the most signi�cant thing about human language and writing is that

speakers and writers can produce a virtually in�nite set of sounds, declarations, no-

tions, and ideas from a �nite set of marks and characters. Animals may have their

languages, but they cannot produce an in�nite number of communication signi�ers

from a �nite number of sounds and gestures.


From pigment-sketched mammoths on rocks to alphabets, writing developed

through transitional stages. Pictures were clues to picture writings, which in turn

were clues to ideograms, and so on throughmodi�cations, all the way to earlymeta-

phorical poetry andmodern writing. A “pictogram” is a picture that resembles what

it intends to mean. In Asia, such writing became the foundation for modern Chi-

nese hanzi and Japanese kanji. In today’s world, a picture of a knife and fork might

represent a restaurant. A slash across the knife and fork would be an “ideogram”: it

might signify no eating allowed. Whereas a pictogram depicts objects, an ideogram

expresses meaning through similarity or analogy. To signify the word “home” by

ideogram, for example, in early domestic China, you would combine the pictogram

for “roof ” with the pictogram for “pig” to make the word “home.” For at least thirty

thousand years, stories have been told through pictures, and as the years progressed,

the stories became more elaborate.
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Some years ago, a friend returned home from ¿ailand and gave me a gi of a

Hmong embroidered “story cloth” that was bought from a weaver living in a refugee

camp. It depicted the story of daily life during the VietnamWar. From it one could

“read” the cycle of life.¿ere is the birth of a child, work in the �elds, falling in love,

a wedding, and a new birth—a whole story without a written word.

Pictograms are easy to understand in a simple world of simple stories.¿e prob-

lem comes when the storytelling is more complex. Imagine theOdyssey “written” in

pictogram characters. Who would fully understand it? It would be too elaborate

and too laborious to absorb, and quite possibly too in�exible for the metaphoric

complexities of serious poetry. Far better is to have the characters represent the

phonemes of speech, so one utterance is distinguished from another—a for “ah,”

b for “be,” and so on.

It’s one thing to have words and quite another to think about the words them-

selves.Writing sentences is altogether di�erent from talking; it must have come a er

a great deal of social growth, a er the �rst civilizations, a er kings and emperors,

and long a er adventurous tribesmen started wandering beyond the familiar for

adventure and trade.

If you ask a person in the street what he or she thinks is the most important

invention in the history of civilization, you are likely to be given the proverbial an-

swer: the wheel. Surprisingly, the wheel didn’t come into existence before the late

Neolithic Age and possibly as late as the early Bronze Age. ¿at would put it some-

where between , and , bc. ¿e earliest depiction of a wagon with wheels

can be seen on a ceramic pot that was excavated in Bronocice, Poland, in . ¿e

Bronocice pot dates back to ca. – bc.

But with the new agriculture of that

period, the wheel should have been an obvious invention—a er all there was cir-

cular pottery, and slices of tree trunk must have given good clues to the enormous

utility advantages of a rolling disk. Surely rolling logs were used before the true sim-

plicity of the wheel. But the wheel is not just a rolling disk. It involves the relatively

complex concept of wheel and axle, combined.

What about the alphabet? It is surely a contender. I would argue that most of the
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other signi�cant inventions that have made our lives possible could not e�ectively

exist without the alphabet, or at least some other clever way of writing the words

we speak. True, that person on the street might argue that the great pyramids of

Egypt could not have been built without the wheel in the form of rolling logs to help

the slaves, and that the tall stone buildings of the world could not have been built

without the wheel and axle.¿ewheel would have come to the world sooner or later,

but some form of writing the sounds we make trumps all.

Modern alphabetic writing is a roughmimic of spoken language. Before any evi-

dence of an alphabet, there was Sumerian picture writing, where each syllable of the

Sumerian language was a distinct picture impressed by a wedge stylus in clay. Orig-

inally, the impressions were meant to be pictures of objects with the same syllabic

sound of the word that was to be conveyed.¿is was a di�erent sort of writing than

that of mere pictographs. Fortunately, spoken Sumerian was a language of words

made from many syllables, and o en the syllables themselves were the names of

concrete objects. ¿e writing consisted of marks, each denoting a syllable. For ex-

ample, a picture of a house being held in a hand might signify “household.”

Hieroglyphic picture writing was used in the Mediterranean area around Egypt

at roughly the same time as Sumerian picture writing, which went through several

transitional stages before slipping away from its pictorial character to evolve into

a pure sound-sign system, and eventually something alphabetic.

By the time the

Phoenician alphabet was introduced, sometime before the �rst millennium bc, nu-

merous cultures in almost every part of the world had developed some form of rep-

resentational writing using pictorial symbols. ¿is gave those cultures the means of

immediate communication and a means of leaving a record of knowledge for future

generations as well.

Unlike the phonetic writing that we have today, in which the symbols of each

word represents the sounds of the spoken words, pictorial writing was an indica-

tor of the meaning of the spoken word, not the sound. By the middle of the �rst

millennium bc, however, pictorial writing was replaced by phonetics.

Pictures can be used to represent words through their sounds. In English, for
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example, you could write “I believe” by juxtaposing the pictures of an eye, a bee,

and a leaf.

Meaning in hieroglyphics was represented through context, just as it is

in phonetic writing. Phonetic writing, however, has at least one important advan-

tage over pictorial: it can express far more combinations of thoughts and ideas. One

might also argue that writers can work in a much freer playing �eld to invent richer

metaphors.

It is not surprising that the need to write came from the need to record mem-

ories, not stories. ¿e earliest documents are of accounts, names, recipes, and itin-

eraries. As the skill of writing spread, so did the reasons. One can imagine gra�ti on

public buildings, secret notes and magic formulas passed to other people, writings

to help one’s memory, or epitaphs for one’s tombstone. Such memories and epitaphs

“call men and women to a deeper awareness of the very act of living itself, and they

guide us through trials and traumas from birth to death.”


At �rst, writing was limited to the initiated, mostly the priestly sects or spe-

cial classes who were trained; once it settled to some standards, however, its power

had profound e�ects on spoken language. Educated peoples from distant lands and

roughly similar languages were soon able to share a common written language, thus

�xing the verbal traditions and creating a common bond of experiences between

foreign lands and separated times.

¿e beginnings of civilizations and cities coincide strikingly with the construc-

tion of temples and the rise of priestly classes, which attracted bright recruits from

the common populace. Primitive agrarian life slowly included a temple life with

priest kings who built their empires. ¿is may have been a result of the growth

of agrarian cultures, which depended on calendars that were understood by the

priests and held by the temples for seasonal rituals. ¿us priests, human repre-

sentatives to the gods, governed the earliest civilizations.

¿eir temples were ob-

servatories, libraries, clinics, museums, and treasure houses. ¿ough the Babyloni-

ans had relatively extensive star catalogues by  bc, it was the Egyptian priests

who—believing the sky divine—mapped out the stars and constellations as early as

 bc.

¿e complexities of star map calculations, along with land surveys and
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taxes, required writing numbers beyond the simple low numbers that were useful

in accounting for sheep in the �elds.

Primitive humans had simple needs. At �rst, counting was limited to very low

numbers.¿e shepherd could know that a sheep wasmissing from the �ock without

needing to count. Any ape could do that—that is, know that a member of the family

is missing. To know that something is missing is a qualitative, rather than quantita-

tive, notion of sets. Facets of primitive life didn’t require any real sense of number.

No one needed to know what number is.

Yet still, for some wonderful reason that seems almost inexplicable, humans—

even primitive humans—have always had an uncanny ability to recognize numbers

beyond the values for which they had words. Children today are taught to recite

numbers in preschool to get a sense of the words associated with quantity.¿ey can

easily recite the numbers from  to . Reciting numbers, however, is not the same

as understanding what those numbers actually mean. A three-year-old may be able

to count to  without understanding the one-to-one correspondence between the

words “one,” “two,” “three,” “four,” “�ve,” and the �ve �ngers on one hand. ¿at cor-

respondence, whenever it occurs in child or human development, is a gargantuan

leap of cerebral maturity. We don’t notice the moment of that leap. ¿ere doesn’t

seem to be any “aha!” experience at that moment. Having �ve �ngers on each hand

does not seem to naturally suggest a one-to-one correspondence with the �rst ten

numbers. Until the middle of the last century, several aboriginal tribes in Australia

had no words for numbers, but could count by making marks in the sand.

Cu-

riously, there were—at least before the last century—several indigenous tribes of

Australia, the Paci�c islands, and the Americas that had no words for numbers be-

yond four, suggesting that the modern concept of numbers as one-to-one counters

had not yet matured.


In both the East and theWest, mathematical writing predates literature by more

than a thousand years. It even predates the oldest surviving written story,¿e Epic

of Gilgamesh, a Sumerian poem that was written more than a thousand years before

the Iliad. We have no direct evidence as to where or when numerical writing �rst
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occurred, just as we have no direct evidence as to where or when writing �rst began

to develop. Some would attribute the earliest concepts of numerical writing to the

Chinese, as far back as the Early Stone Age. ¿at seems doubtful. But it appears

reasonable that it coincides more or less with cuneiform Sumerian number writing

dating back to  bc.


Like the art found in the caves of southern France and northwestern Spain, num-

ber writing came about through the human endeavor to record.

One of the world’s

oldest extant written records (German Archeological Institute Museum number

W ,+) seems to be an exercise in calculating the areas of two �elds, writ-

ten sometime in the late fourth millennium bc. It is a collection of fragmented clay

tablets found among the reused building rubble of the city of Uruk. Its carbon date

(ca. – bc) predates any known evidence of writing, at least of writing that

we agree is phonetically associated with a spoken language.

Traces of Sumerian number writing on clay tablets with numbers as large as

, have been found in caves from Europe to Asia. Egyptian hieroglyphics had

a distinct symbol for the number ,. By  bc, the algebra problems in the

famous Rhind (or Ahmes) papyrus presented simple equations without any symbols

other than those used to indicate numbers.
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Chapter 2

Certain Ancient
Number Systems

Call them what you wish—Babylonians, Sumerians, or Akkadians. We have heard

their stories before. Almost every history of earlyWestern mathematics begins with

the Babylonian conception of number, a so-called sexagesimal (base ) system for

writing large numbers, formulations of multiplication tables, and ideas for astron-

omy. But who were those Babylonians, and why were they the ones to �rst come up

with human civilization, culture, art, and science?

To answer, examine the geographical region of the FertileCrescent, that crescent-

shaped region between the Eastern Mediterranean and the Persian Gulf, and run-

ning through southeastern Turkey to Upper Egypt. It happens to be a unique area

responsible for the spread of wild emmer wheat, wild einkorn, and wild barley, and

therefore an exceedingly favorable area for the birth of local agriculture.

Within

the Fertile Crescent lies an area near the Tigris-Euphrates valley. Generally, the

term “Babylonian” refers to things related to far more than just the city of Baby-

lon, and essentially to a wide geographic area that today includes southern Iraq,

Kuwait, and parts of western Iran. It is an area near and between two great rivers

that converge close to modern Baghdad, then diverge and zigzag until they meet at

Al Basrah in southern Iraq, just north of Kuwait, before pouring into the Persian

Gulf. If you look at a map of these great rivers, you cannot avoid being impressed

by their meanderings. ¿e Tigris wanders south of Baghdad as if it were a water

snake that cannot make up its mind whether to go southwest or northeast. In some
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places—near Suwayrah, for instance (�gure .)—it can take two hours to navigate

the Tigris by boat only to �nd that a ten-minute walk over land will bring you to

the same spot. In other places, a half-hour walk will bring you to the same spot it

would take a boat six hours to reach. ¿is means that the land between two rel-

atively long lengths of the river may be easily irrigated. Even today much of the

banks of the Tigris is undeveloped farmland. ¿ere are few long sharply twisting

rivers in the western world. Rivers generally go places from high elevation to lower.

¿ere are rivers in northern Europe that have sharp meanderings—for instance, the

thousand-kilometer Elbe—but northern climates were not terribly welcoming to

winter crops. ¿ough the Tigris-Euphrates valley terrain was not ideal for farming,

the great rivers, with theirmany tributaries and canals running slowly through, were

outstanding for irrigation. Small villages grew along the rivers that cut through the

moderately �at countryside south of Baghdad to collectively become the �rst urban

centers in the West. Many of the ancient tributaries and canals along the alluvial

plain south of Baghdad that were around when the �rst settlements carpeted the

region are now gone, dry.

FIGURE 2.1 Section of the Tigris River near Suwayrah. Source: Google Maps.
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If you lived in King Hammurabi’s time, however—that would have been almost

thirty-seven hundred years ago—and wanted to settle down to plant crops for your

family, what better place could you �nd? Southern Mesopotamia. Its �at marsh-

lands, vast tracts of fertile soil, and abundant wildlife were ideal for growing bar-

ley and managing sheep and goats. ¿ere is where the �rst urban civilizations were

anchored.

Southern Mesopotamia leaped ahead of other regions in urbanization and ef-

�cient farm irrigation near capital cities along rivers and canals of Kish, Nippur,

Lagash, Uruk, Eridu, Shuruppak, and Ur. Babylon was at the center of an empire

extending far beyond southernMesopotamia into the northwestern bend of the Eu-

phrates River.

Snaking rivers and a prolonged farming season helped, but theremust have been

something else that made that place so special. Was it the soil, the trade route, or

pedigree of its ancestral lineage? According to Bill Arnold, the author ofWhoWere

the Babylonians?, it was neither the soil nor the trade route. Egypt, he argues, “was

largely isolated from the rest of western Asia because it was limited to the narrow

band of hospitable land created by the Nile Valley,” and so was a land of few in-

vasions, a land limited to very few cultural diversities. Mesopotamia, on the other

hand, was vulnerable at almost all its borders with a continuous infusion of distinct

nationalities bringing the usual riches of diverse cultural in�uences.

Babylonia was a “melting pot” of antiquity, not through any hospitality to for-

eigners, but rather through its lack of natural landscape barriers and thus its vulner-

ability to foreign invasion. ¿e open plains of the south and the waters of the gulf

were easy entrances, and the hills of the east and northeast were easy passageways

to the urban centers of Babylonia. Frequent invasions by seminomadic populations

collaged thewhole region into contrasting ethnicities that continuouslymingled and

fused.

Southern Mesopotamia’s large and growing urban centers were sustained by a

unprecedentedly wide socioeconomical linkage that, for the �rst time in history, re-

quired a managerial workforce to administer, organize, and account for trade and
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labor. ¿at’s where records had to be kept. ¿at’s where recorded accounts began.

Written in clay, the accounts were collections of symbols alongside pictogram de-

scriptions of the objects being accounted—land, people, livestock.


In the early s, when the Ottoman Empire was crumbling and barely regu-

lating trade in minor antiquities (other than with bribes and bureaucratic obstruc-

tions), the American diplomat, antiquary collector, novelist, and itinerant archaeol-

ogist Edgar James Banks bought hundreds of cuneiform tablets on the openmarket.

He later transported those tablets to America and sold many to museums, libraries,

and collectors.¿ere was one tablet in his collection that came to be of special inter-

est to mathematics historians. It was found at Senkereh, an archaeological site near

the ancient Babylonian cities of Larsa andUr, the birthplace of Abraham in southern

Iraq.

Banks sold it to the New York publisher George Arthur Plimpton for $ in 

(approximately $ in today’s value, according to the American consumer price

index).

It is always di�cult to reconstruct pieces of a culture from fragments of

history, and the story of Plimpton  has many sides.

In , the mathematical

historians Otto Neugebauer and Abraham Sachs interpreted it as containing a list

of Pythagorean triples—that is, a list of integer solutions to the equation a + b =
c. What makes this striking is that it predates the Western idea of a Pythagorean

theorem bymore than a thousand years, and yet suggests that the Babylonians must

have had a suspicion of some sort of Pythagorean theorem. Recently, however, the

mathematical historian Eleanor Robson, working at the University of Cambridge,

has given a strong case for interpreting the tablet to be a teacher’s aid, designed to

generate problems about right triangles, not at all a proto-Pythagorean theorem.


¿e illustration in �gure . is a pen-and-ink sketch of a Babylonian tablet made

in the ancient city of Nippur at the center of Babylonia about , years ago. ¿e

marks are not tiny bird footprints, but rather impressions made from a wedge-

shaped stylus. When pressed into moist slabs of clay, the stylus would leave a print

of either the form or the form .

¿e slabs would then be baked.
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FIGURE 2.2 The Nippur Tablet. stands for 1 and for 10. Redrawn from
R. Creighton Buck, “Sherlock Holmes in Babylon,” American Mathematical Monthly,

vol. 87, no. 5 (1980): 335–345. Reprinted with permission of the
Mathematical Association of America.

Examine the le column, reading from top to bottom. Knowing nothing of the

ancient script, we can guess that the column represents the numbers from  to .

What about the second column from the le ? If our �rst guess is correct (and how

could it not be?), we would know that the �rst symbol in that column represents the

number . What could the next number down be? It must be a juxtaposition of the

symbol for  and the symbol for . Could it be ? By the same reasoning, the third

symbol seems to represent . Hmm . . . could the second column be the multiples of

?¿at seems to be true until the sixth line down—that is, � = . At the seventh
line down, something strange seems to happen. ¿e symbol looks as if it is a . But

is it? If it is, then that second column is not a list of multiples of . So what could it

be?

We notice that there is a space between the �rst wedgemark and the other three.

If there is a hope that the second column is a list of multiples of , then the seventh

symbol should be . Perhaps the space indicates that we should multiply by 

before adding the three wedges. ¿at would give the correct multiple of .

Testing this hypothesis with the remaining entries, we �nd that our reasoning

works:
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 �  =  �  +  = 

 �  =  �  +  = 

 �  =  �  +  = 

 �  =  �  +  = 

 �  =  �  +  = 

And it holds for the next two columns. So we have here an example of a very

early clever use of notation, where a “space” is used as a symbol.

Our number symbols—that is, our current ones—are quite di�erent and far

more sophisticated. ¿e number  represents  times  plus . We need symbols

for just ten numbers (, , , , , , , , , ) in order to represent any number we

wish. ¿e Babylonian system needed just two symbols, though, to the uninitiated

eye, it may seem as if it needed � y-nine distinct marks. To designate a number less

than , symbols of smaller numbers were systematically clumped together, one al-

most touching another. For example, the number  would be written as

We write sixty-one as  and know that we don’t mean ,. How did the Baby-

lonians distinguish  from ,? ¿e number  is represented by , and the

number , is represented as . ¿e only di�erence is the number of blank

spaces separating the wedge marks. ( sandwiches one blank space, while

contains two.) However, since a blank space has no visible boundaries, it is di�cult

to know (especially when those marks are done by hand) how many blank spaces

separate the marks.¿ere is a problem. A blank is simply a vacancy, and two blanks

might still look like just one vacancy.

You might think that context had to play some role in distinguishing numbers

by the sizes of their relative values, just as it does in the ambiguous circumstances

of language. For instance, distinguishing goats from goat is easy: the �rst has

the hint of plurality, and therefore must mean  goats, while the second is singular

andmust mean  goat.Would context distinguish (,) from (,)?

Possibly.
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Someone had to come along anddevise a tool tomake the systemwork. From the

bene�t of twenty-�rst-century retrospection, we see clearly what that tool is. Let any

doodle stand in for a blank space—say, . ¿en the reader could easily distinguish

between and . So why was that not done?

It was. Yet, like Rome, and unlike modern Beijing, it did not suddenly appear

one day. Someone had to come up with a clever plan. Indeed, it had taken more

than a thousand years for that to happen. At some time between  and  bc,

someone thought of using a symbol looking very much like to represent a blank

space. It was the invention of a placeholder, the Babylonian zero, though not the

proper notion of a modern zero. It was then possible to distinguish from

without having to rely on context alone.

As odd as this system must seem to us, it was brilliant. As long as one could

distinguish spaces, a Babylonian arithmetician could write numbers of any value

using just two symbols, and that exotic mark to demark a space.


Long before Babylonian scribes pressed reeds in clay in the hot sunshine of Nip-

pur, Egyptians were engraving hieroglyphics into stone, metal, and wooden monu-

ments. ¿at was when numbers were simply pictures of objects, when each power

of ten had a di�erent symbol.¿e number  was represented by a vertical sta�;  by

a sta� bent in the form of a semicircle;  by a snail �gure; , by a lotus plant;

, by a pointing �nger; , by something that looks like a small bird, or

possibly a �sh; ,, by a man with his hands raised, as if bewildered by the

enormity of the size (�gure .).


Some Egyptologists have speculated that the snail �gure is a coiled rope, that the

small bird is really a frog, and that the man who seems to be worthy of representing

a numeral as large as one million is really a god. And, since Egyptians had no need

for any number beyond, say, ten million, that god also represented any amount that

was a very great amount. Number writing was additive with larger representatives

always placed to the le of the smaller. So, for instance, the number , would be

written as (from right to le ) a picture of one vertical bar, six snails, and three lotus

plants.¿e scheme works nicely, with no need for placeholders, a distinct advantage
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over the Babylonian. ¿e number , is well distinguished from ,. To write

,, there would be no ropes, and no lotus plants, just a bar, six lotus plants, and

three �ngers. ¿ere is no confusion between  and ,. And moreover, there is

no confusion between  and ,, since the latter would be a display of six ropes

followed by three lotuses.

Early Egyptiannumberwritingwas an additive system.Towrite ,, onewould

simply join a lotus plant against �ve vertical sta�s; however, nomore than four sta�s

would be adjoined, so the scribe would divide the sta�s into two groups. Sometime

a er the second millennium bc, a multiplicative system came into being. To write

the number ,,, a scribe writing on papyrus would draw aman on top of two

sta�s. But there are a great many puzzling questions that Egyptologists still cannot

answer. For example, in hieroglyphics the unit fraction



was written as the picture

and



was written as % .

      
1 10 100 1,000 10,000 100,000 1,000,000

FIGURE 2.3. Early Egyptian number writing. From Florian Cajori, A History of
Mathematical Notations (New York: Dover, 1993), 12.

¿eHebrews had a di�erent scheme.¿eir alphabet has twenty-two letters, each

symbolizing a number (see table .). ¿ere are �ve more letters that are used only

at the ends of words. ¿ey are ,ף ,ז ,ם ,ד and ץ representing , , , , and
.

To represent thousands, one would start from the beginning and place two dots

above the letter. So א̈ would represent ,; ċב̈ would represent ,, and so on.
Now here is the tricky thing. Hebrew is read from right to le , and numbers above

a thousand could be written two ways. As with all the Hebrew number schemes

discussed on these pages, each culture’s number scheme went though many trials

and changes over the centuries. By the eighth century ad, the two-letter symbol ה̈א
would mean ,. ¿e letter א would ordinarily represent the number , but when
it appeared to the right of another letter—say, it—ה would represent ,. ¿ere

would be no confusion, because, even though the letters were read from right to
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le , their number equivalents were understood to descend in value. Hence the ה to
the le of the א would signify ,.

Table .. The Hebrew Alphabet

א (Aleph)  ל (Lamed) 

ב (Bet)  מ (Mem) 

ג (Ghimel)  נ (Nun) 

ד (Dalet)  ס (Samekh) 

ה (He)  ע (Ayen) 

ו (Vav)  פ (Pe) 

ז (Zayin)  צ (Tsadi) 

ח (Het)  ק (Qof) 

ט (Tet)  ר (Resh) 

י (Yod)  ש (Shin) 

כ (Kaf)  ת (Tav) 

¿is scheme works nicely.¿e number , would be written .טוחו Notice that
the letter ו appears twice, and yet it is considered two di�erent numbers. Standing
alone, it represents a . Reading right to le , the �rst ו must have a value between
that of the ט and the ,ח and therefore must mean a number between , and ,
and hence that ו must be . ¿e ו in the last position must mean the smallest
number it could possibly represent, which is a .

It is the nature of symbols in general to connect unrelated meanings in order to

create a state of mind. In Hebrew, the number  would be naturally written from

right to le as י (the symbol for ) plus ה (the symbol for ). Writing  in that

way, however, would also be writing the �rst two letters of the name of God. So the

number  was (and still is) written as  +  (טו) instead.
¿e Greeks borrowed the Hebrew system for representing numbers. ¿ey too

had each number represented by a letter of their alphabet—a terribly inconvenient

scheme for representing large numbers.
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α β γ δ . . .

    . . .

Why didn’t they adopt the genius of the Babylonian system, with its placehold-

ers and relative ease of writing large numbers? ¿e Babylonians had the right idea

of positional notation, the clever idea of using the same digits to represent multiples

of di�erent powers of . How could those mathematically resourceful Greeks miss

such an inspired idea?With all that they did—their organization of logical thought,

evidence, and proof; their understanding of geometry and the irrational; their pow-

ers in resolving issues of number theory through geometry—why did they not see

a better way of handling numbers to make arithmetic easier? One answer might be

that some form of abacus was used for most calculations.

Perhaps it was because their interest was to grasp the grand scope of mathemat-

ics itself. Calculation was not really their game, though surely there were a great

many mathematicians doing nondeductive mathematics as well. ¿eirs was the de-

velopment of a strictly deductive science, proof, solutions, universals, perfection,

and an understanding of Euclidean space and the relations of objects that �ll that

space, all done with a relatively awkward number system, and a level of sophistica-

tion that hardly needed a number system at all!

Sometime during the eighth century bc, the Greeks adopted the Phoenician al-

phabet, and with it “acrophonic” numerals, symbols derived from the �rst letters of

the written words representing numbers (see table .).

It was a slow process leading to other systems competing for popularity during

the � h century bc, whenmore global commerce took e�ect with theHebrews, Syr-

ians, and Phoenicians, who had their own alphabets. As it happened, those alphabet-

clever Phoenicians li edEgyptian hieroglyphic signs, gave themunique sounds, and

represented those sounds as letters, yet oddly did not use their own alphabet to rep-

resent numbers—rather, they used a system of vertical bars.
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Table .. The Greek Acrophonic System

 Ι Ἰώτα

 Π Πέντε

 ∆ ∆έκα

 Η Ἡκατόν

, Χ Ξίλιοι/χιλιάς

, Μ Μύριον

Note: To write  times a number, place the number under the umbrella symbol �. For example H�

signi�es .

Sometime a er the fourth century bc, the Greek sequential alphabetic number

system won the competition and displaced the old acrophonic system. Like the He-

brew system, the Greek alphabetic system became the standard.


It was quite awkward when describing large numbers. Even Archimedes, when

writing his ingenious SandReckoner, on estimating the number of grains of sand that

it would take to �ll the universe, resorted to using words, not notation, to describe

such large numbers. His answer, in our convenient notation, was close to 

, well

below

the more correct answer of about 


.

But why did the sequential alphabetic number system win?Why did the Greeks

abandon the acrophonic system for the alphabetic? Could it have been simply to

have shorter representations?¿enumber , in acrophonic notation is χΗ�ΗΗΗ

∆�∆∆∆ΙΙΙΙ. In alphabetic notation, it becomes αωπδ. Wouldn’t it be harder to re-

member the numerical values of twenty-seven symbols than to remember just six?

Yes, but over time, a schoolchild could memorize the values, just as well as memo-

rizing the order of the letters.

No. It seems that there is a conceptual di�erence. FlorianCajori, the early-twenti-

eth-century mathematics historian, in his consummate history of mathematical no-

tation, considered the following two arithmetic identities (keep in mind that the

plus and equal symbols did not appear before the sixteenth century):
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ΗΗΗΗ+ΗΗ = H�Η,

∆∆∆∆+∆∆ = ∆�∆.

¿e corresponding equalities written in alphabetic representation are

υ + ς = χ,

µ + κ = ξ.

¿ere was a choice. Both representations were human-made and both competed

for the favors of arithmeticians and scribes who had to use them. Both were cum-

bersome. Only one won out. Why didn’t the Greeks, who surely knew about the

Babylonian system, come up with amore clever system that uses placeholders?Why

was it le up to the Indians east of the Punjab to come up with the smartest system

of all?

We can see the shadowy hints of a place-value system in �gure .. ¿e �rst ten

Greek letters represented the �rst ten numbers. To represent numbers from  to ,

one would write ια, ιβ, ιγ, ιδ, ιε, ις, ιζ, ιη, ιθ, which would have meant  + ,  + ,

and so on. ¿en, to represent  to , one would write κ, κα, κβ, κγ, κδ, κε, κς, κζ,

κη, κθ, which would have meant ,  + ,  + , and so on.

¿ough there were

some invented symbols, such as the strange symbols for  and , the creators

should have realized that the placing of a symbol could dictate its value. To write

the number  in the Greek system, where place does not dictate value, one is forced

to introduce a new symbol (κ) to represent . To write the number  in a system

where place does dictate value, all that is needed is β, the symbol that represents

, a symbol already well de�ned. When β appears in the second place it means ,

not . ¿e number  could have been written as βγ.

I bring this up here to show

that a choice of symbol notation can be an obstruction to future advancement. As

with any of the other alphabet numeral systems, the Greek scheme was �ne for low

numbers, but awkward for large numbers.

¿ese ancient alphabets were not just collections of concrete linguistic elements

with individual identities, but building blocks ripe for multiple meanings. Fi h cen-

tury bc Greeks believed that everything in the world could be connected to whole
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numbers.¿e number  (the letter “β”) meant opinion,  (“γ”) harmony, and  (“δ”)

justice. Odd numbers were male; even numbers female. ¿e number  (“ε”) sym-

bolized marriage, possibly because it was the sum of the �rst even number with the

�rst odd number. And the number  (“κ”) was holy because it was the sum of the

�rst four dimensions (point, line, triangle, tetrahedron),  +  +  +  = . So we

begin to see that all sorts of metaphorical states of mind are emboldened by these

ancient number systems.

FIGURE 2.4. Greek sequential alphabetic system. The letter representing 6 is , a
cursive digamma, an ancient letter that disappeared from the Greek alphabet sometime
before the seventh century BC. It looks like the sigma used at the end of words, but its

sound is very different. It is important to keep this in mind when we talk about the
alternate sigma as a nonnumeral symbol in part 2. Note that 6 is represented by , even

though the true alphanumeric order should have z represent 6.

¿e Roman system, which was closely related to the Greek acrophonic system,

used the principle of addition to display large numbers along with a clever idea of a

subtraction rule: when a smaller number was placed to the le of a larger, it meant

subtract the smaller from the larger (see table .).

Table .. Late Roman Number Symbols

 I

 V

 X

 L

 C

 M
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Hence,  could be written as XXCIII instead of the longer version, LXXXIII.

Good number grammar required numbers to be displayed by their shortest possi-

ble length, but it was not always applied. ¿ere were variations. For example, by the

fourth century ad, we �nd places where writers used a horizontal line above a num-

ber to indicate a thousand times that number, so X would mean ,, rather than

. Vertical lines to the le and right of a number with a bar over it would indicate

one hundred thousand times that number, so SXS would indicate ,,. Like the
Greek scheme, it too was terribly inconvenient for representing large numbers.


We

still use Roman numerals for dates, though I wonder why.

¿ough theAztec numerals have no direct historical connection to those ofAsia,

Africa, and Europe, they show similarities. Aztec numerals beganwith dots for units

up to . A er , they became pictorial. A full feather was considered to be , and

so a quarter feather was , a half feather was , and three-quarters was .¿e

symbol for , was a purse that presumably contained  times , though the

purse itself had no clear indication of that product. (See �gures . and ..)	  

   1     2          3          4          5          6          7         8          9 

FIGURE 2.5. Low Aztec numerals.

 

10        20   100    200       300       400     8000

FIGURE 2.6. Higher Aztec numerals.

As with other systems on other continents, the system was additive. Unlike the

Babylonian single base system, however, the Aztec system had three bases: , ,
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and ,. To write, say, ,, an Aztec would write what is shown in �gure ..

                                                

FIGURE 2.7. Writing 26,504 in Aztec.

 � , +  �  +  �  + 

¿e Mayan (date unknown, yet likely in the Classical Period, – ad) ap-

proach was close to being a vigesimal (base ) system. ¿is Mayan arithmetic sys-

tem is pre-Columbian, and yet the notion of adding and carrying characters is sim-

ilar on two continents that had no human contact for over , years. Similar to

the Babylonian system, it made use of the placeholder utility of zero in a system of

dots, bars, and columns. A dot represented a unit, and a bar represented �ve units.

For example, ,, would be a written as shown in �gure ..

FIGURE 2.8. Mayan numerals.

From top to bottom, this means

Multiply  by  �  �  �  � 
Multiply  by  �  �  � 
Multiply  by  �  � 
Multiply  by  � 
Multiply  by 

Units level ()
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¿e sum, from bottom to top is

 +  +  + , + , + ,, = ,,.

¿e system does make arithmetic easy. To add two numbers, write them as

columns, add their respective rows, and then add the resulting column, using a

carryover, as we do in our modern system of addition. For example, to add  to

, a Mayan would write:

25 2

155

555

 

and then add the �gures in each row to get:

45
155555



Four bars in the lower �gure would “carry up” to become one dot of the next

level:

55
15



Although the number  is easily written, a lower number such as  is more

problematic. Mayans could not just place a dot at the second level when there was

nothing in the units level. So they cleverly designed a symbol that would stand for

the empty level, a zero that looked something like 0. ¿e number  could then

be written as

1

0.
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Chapter 3

Silk and Royal Roads

Master Sun says: [The function of mathematics] is to investigate
the assembling and dispersing of the various orders [in nature], to
examine the rise and fall of the two qi (i.e., yin and yang).

—The Nine Chapters1

Topography and frequent pounding of hooves and shoes formed the East–West

route connecting China to India and India to Persia. ¿ere were no road crews.

¿e Silk Road was not one particular road, but rather a series of land and sea routes

crisscrossing Eurasia, passing over , miles of wildly rugged terrain, and con-

necting to other routes traveled mostly by Indian merchants, agents, and explorers.

Formed sometime around the second century bc, it connected to the Royal Road

in the Zagros Mountains of Persia, where postal o�ces relayed mail and where one

could �nd fresh horses for a journey all the way to the Mediterranean. Satin, silk,

hemp, perfume, spices, jewels, glass, and medicines traveled westward; gold, silver,

carpets, and wines eastward. As with all major commercial trade routes, the Silk

and Royal Roads were also communication lines between cultures, religions, and

philosophies as well as germ itineraries for minor and serious illnesses.

Teaching and knowledge of philosophy, science, and mathematics also passed

along those intercountry highways. Commercial trade was done mostly through

bartering, but fair bartering required at least a rough estimate of value, an under-

standing of conversions of weights and measures: square areas of silk, or weights of

gold, or value of coin. An Indian who traded with both Persian and Chinese agents

had to understand the mathematics of commerce and be able to convey and under-
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stand some kind of numerical information, possibly through converting between

labels of Western and Eastern numerals.

So much of the history of Chinese mathematics has been lost or destroyed over

the centuries, largely through book burnings ordered by despotic emperors, that

we in the West tend to believe the myth of Western dominance of mathematical

origins. ¿e oldest recorded Chinese mathematics, including the �rst written nu-

merals, dates back to the Shang dynasty (– bc). In , archaeologists ex-

cavated thousands of bones and tortoise undershells from a site that was once the

capital of the Shang dynasty at Xiaotum in south-central China. Since then, tens

of thousands of new �ndings have been collected and studied. ¿ey have numer-

ical symbols marking numbers of enemy captured or killed in battle, numbers of

birds and animals hunted, numbers of animals sacri�ced, and tallies of many other

achievements.


By the beginning of the Early Han dynasty ( bc– ad), Chinese numerical

characters were established as a decimal system looking very much like the Chinese

numerals that are used today (see �gure .).

1 2 3 4 5 6 7 8 9 10
一 二 三 四 五 六 七 八 九 十

10 10 10
百 千 萬

2 3 4

FIGURE 3.1.

¿e number ,, for instance, would be written as

二 萬 六 千 九 百 九 十 九 .

We have to celebrate just how clever this is. From le to right, it reads:  ten

thousands,  thousands,  hundreds,  tens, and . It is, by all means, a decimal

system. Why so clever? ¿e zero is never needed, at least not as placeholder. To

write ,, you would simply write

二 萬 九 .
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We really must admire the Chinese for this. When there are no tens, hundreds,

or thousands, just don’t include them. No need for a zero!

I expect it would be every mathematics historian’s joy to know who those smart

Chinese mathematicians were who came up with such brilliantly simple ideas that

include not only a slick system for writing numerals for commerce but also clever

ideas for land surveying and astronomy. Alas, because of wars, book burning, and

destruction of manuscripts, almost nothing is known about even the most major

creative contributors.

¿is ingenious numeral system gave theChinese away to “name” large numbers,

but something else was needed to do practical arithmetic. Once again, the Chinese

had a terri�c system: counting rods.

Long before the �rst millennium, the Chinese commonly used counting rods

made from animal bones or bamboo to represent numerals one through nine (�g-

ure .) in a base ten positional number system.

It was a arrangement of vertical

and horizontal bars in a decimal system very like our own, except there was still no

notion of a zero placeholder.

FIGURE 3.2. Chinese counting rods.

Naming numbers and �nger countingmay be �ne for representing small quanti-

ties, but addition, multiplication, and division require some moving and removing:

writing, scratching out, and rewriting. In the absence of cheap paper in the �rst cen-

tury bc, counting rods, which could be quicklymoved and removed in the course of

a sequence of calculations, were most e�ective. Like the Hindu-Arabic system, the

Chinese written numerals and the counting rod numerals were positional and easy
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to use, not just for representing numbers, but also for facilitating computation and

mathematical concepts.

Knowledge of how to use counting rods was assumed in a Han dynasty (

bc– ad) manuscript¿eNine Chapters on theMathematical Art (Jiuzhang suan-

shu), an immense collaborative work of  problems written on traditional con-

nected bamboo strips.

Historians believe it to be the oldest Chinese text entirely de-

voted to all the known mathematics that had come before it, a real Chinese Euclid’s

Elements, ending with—if not a proof in the sense of Euclid’s axiomatic logic—a se-

rious and appreciated persuasion of the Pythagorean theorem. ¿e Chinese way of

doing mathematics was by persuasion through examples and analogies, proof (or,

at least, persuasion) no less valid than Euclid’s.

Unfortunately, as it is with almost all �rst millennium bc books, there are no

surviving complete copies of the original, which was probably destroyed in a  bc

book burning ordered by the emperor Qin Shi Huang under a ridiculous pretext of

eliminating the obsolete tomake way for the new, though it’s more likely, as it is with

all insecure tyrants, that Qin Shi wanted to erase any evidence that would compare

his reign with those of past emperors. We are fortunate, however, to have a  ad

version of the work that was compiled by Zhang Chang and Geng Shouchang in the

�rst century bc. It has a commentary and supplement by Liu Hui.

In the preface,

he wrote

I read the Nine Chapters as a boy, and studied it in full detail when I
was older. [I] observed the division between the dual natures of Yin

and Yang [the positive and negative aspects] which sum up the funda-

mentals of mathematics.


Lay Yong Lam at the National University of Singapore and Tian Se Ang at Edith

Cowan University in Australia, two eminent authorities on Chinese mathematics,

tell us in Fleeting Footsteps that it is not too wild to consider the possibility that the

Hindu-Arabic number system might have come from the Chinese counting rods.


¿ink of the rods as toothpicks laid out on a �at surface, a counting board. We

have several early Chinese mathematical writings that shed some light on Chinese

Silk and Royal Roads 29



“Mazur” — // — : — page  — #

arithmetic—in particular, the fourth or early � h century Sun Zi Suan Jing (¿e

Mathematical Classic of Master Sun), which shows numerals as vertical and hori-

zontal rods.

Red counting rods were used for positive coe�cients and black for

negative; they would be placed into (or removed from) counting squares to perform

operations of addition, subtraction, multiplication, and division.


It is a place-value system, so, for instance, the number , would be written

as

¿is is remarkably similar to our Hindu-Arabic decimal system. A problem comes

when trying to represent a number such as ,,. ¿ere was still no notion of

a zero placeholder. ¿e original Hindu-Arabic decimal system had no symbol for

zero, but did have a word for empty space (sunya in India, and sifr in Islam); as with

Chinese rods, which also had a word for empty space (kong), it too used a blank

space as a placeholder.

Spaces count, as they did in the Babylonian system, but

when writing in a hand script, spacing is o en ambiguous. Does the Chinese rod

number in �gure . mean ,, or ,?

 

FIGURE 3.3. 2,600,999 or 260,999?

With this too, the Chinese were inventive. Notice that there is a space (a kind

of zero) between the  in the ten-thousands rank and the  in the hundreds rank;

however, just to be sure that the number represents , and not ,,, the

rods are alternating orientation through the ranks.¿e rods indicating the  and the

 are of the same orientation; that altering skip signi�es that there is a zero between

the  and . To write , poses a slight problem, but the simple solution is to

write it as 一千, which translates to ( thousand).
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Remember how the ancient Babylonian system used a space as a placeholder for

zero and two spaces for a double zero? ¿is Chinese system circumvents that need

by that clever orientation trick. So, if two zeros were sandwiched between the  and

, the orientations would have indicated so.

How clever! A yin-yang notion of opposites. ¿is e�ective little trick also works

nicely for distinguishing a double zero from a single zero.¿e number illustrated in

�gure . is ,. ¿e number ,, would be represented di�erently as

.

¿ere seems to be two spaces between the  and ; that wouldmake it ,,,

but to be sure, look at the alternating orientations of the rods.

If there were just one space between the  and , the orientation of the  and

 would be as it is in �gure .. ¿e system is particularly helpful in distinguishing

, from ,. ¿e �rst is represented as

,

and the second as

.

Another important mathematics book is the Suan shu shu (A Book on Num-

bers and Computations). Among others, it was discovered in  when archaeol-

ogists discovered an ancient tomb in central China that had been sealed since the

�rst century bc.

Almost two hundred traditional bamboo strips were found; when

connected, those strips would form the Suan shu shu, a book, about the same clever

counting rods, yet with something more: a matrix system for making arithmetical

calculations.

¿e illustrations of �gure . show how  would divide ,.
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63     
  23 
  18 
    58 
    54 
      4 

 a	   b	   c	   d	  

e	   f	   g	  

FIGURE 3.4. Dividing 6,538 by 9. Source: Philip D. Straffin Jr., “Liu Hui and the First
Golden Age of Chinese Mathematics,” Mathematics Magazine, vol. 71, no. 3 (1998):

164. Reprinted with permission of the Mathematical Association of America.

In square (a), the �rst row starts out blank, just as the top line would in our own

long division. ¿e second row represents ,. ¿e  in the third row is placed in

the hundreds column under the . Notice that, in square (b), the  is entered as a

result of dividing  by . And so, in square (c), the  and  are taken away and

replaced by the remainder  in the hundreds column. ¿e process continues just as

it would in our own long division using our own Hindu-Arabic numerals.

¿e fundamental operations of arithmetic in this rod system are identical to

those of the Hindu-Arabic system.Merchants, scientists, and travelers used the rods

in China from the fourth century bc until the abacus replaced the rod system some-

time during the sixteenth century. Bags of rods were standard issue to military o�-

cers in the seventh century.

¿e Sun Zi Suan Jing explicitly details how rod calcula-

tions for multiplication, division, and extracting square and cube roots were carried

out.

Directions for multiplication and division calculations in the Sun Zi Suan Jing

were the same as those for Hindu-Arabic numbers in al-Khwārizmı̄’s book on arith-

metic. ¿e near identical descriptions for computations in the two systems have led

some experts to believe that our Hindu-Arabic system may have been transmitted

from China to India. So say the two authors in Fleeting Footsteps: “It was the only
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known numerical system which is conceptually identical to the Hindu-Arabic nu-

meral system.”


Formost ancient cultures, the symbols for the �rst three numerals are either hor-

izontal or vertical lines, most likely evolved from representations of �ngers or sticks.

Whenwe reach the symbol for four, we generally do not see four vertical or four hor-

izontal lines, but rather a con�guration of lines, possibly four. For some cultures, the

transition from parallel line markings to other con�gurations does not occur before

the number six.¿eChinese system is one of the oldest, and one in whichwe can see

a logical �nger-counting or stick-counting progression.

¿e symbol for  should

not be six vertical sticks, because it would be di�cult to distinguish �ve vertical

sticks from six without counting—the whole point of the numeral symbol is not to

have to count.¿is is very similar to contemporary tallying, where  is marked with

four vertical lines and a � h horizontally crossing through.

A child learns the colors of the rainbow long before grasping the meaning of

color. Same with number words and the concept of number. Asked to invent a num-

ber system never having seen one, you or I might come up with a Greek or Hebrew

system. It is simple (almost natural) to invent, yet, like the early desktop computers,

awkward to use.

Long before anyone thought of writing numbers using a base system, number

writing was done as marks, o en batched together in �ves. ¿ere was no real need

for numbers to have individual symbols, as long as the number of batches was not

too big. What could “not too big” mean when there were no words or symbols to

mark the cardinality of such a “number of batches?” Such a system would be �ne

for, say ten or twenty marks, but without names or pictures of individual numbers,

the system breaks down for large tallies.

Recently, I overheard a conversation between two of my granddaughters: �ve-

year-old Lena asked her ten-year-old cousin Sophie, “Why do I have �ve �ngers on

my right hand?” Sophie’s answer could not have been better. “So we can count right.”

Who but a child could come up with such a wonderful cart-before-horse answer?
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An Athenian in one of Plato’s short dialogues wisely asks how we learned to

count:

How did we learn to count? How, I ask you, have we come to have the

notions of one and two, the scheme of the universe endowing us with a

native capacity for these notions?¿ere aremany other creatureswhose

native equipment does not so much as extend to the capacity to learn

from our Father above how to count. But in our case, God, in the �rst

place, constructed us with this faculty of understanding what is shown

us, and then showed us the scene he still continues to show.


Pure mathematics depends on the meaning of “number.” Isn’t it extraordinary

that we understand numbers correctly from almost our �rst encounters with them,

and that we feel comfortable with using numbers before we know what they really

are? ¿e Athenian argues

Recall our very just observation, that if number were banished from

mankind, we could never become wise at all. For a creature’s soul could

surely never attain full virtue if the creature were without rational dis-

course, and a creature that could not recognize two and three, odd and

even, but was utterly unacquainted with number, could give no rational

account of things whereof it had sensations andmemories only, though

there is nothing to keep it out of the rest of virtue, valor, and sobriety.


We can de�ne what we mean by number. But no matter how we de�ne number,

its meaning must lead to normal worlds that are consistent with the principles that

we have established by design—namely, that what Bertrand Russell, in agreement

with my granddaughter, once said should be true, “We want to have ten �ngers and

two eyes and one nose.”
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Chapter 4

The Indian Gift

Some low Brahmi numbers (�gure .) graphically resemble our low modern num-

bers. ¿e Brahmi system, however, was conceptually very di�erent. It was not a po-

sitional system of powers of ten. Rather, it was closer to an alphabet-based numer-

ical system that requires long concatenated strings to represent even relatively low

numbers.

 

 
 
 

 

 
 
 

 

 

1        2       3        4       5        6        7        8       9 

10     20      30      40      50      60      70     80     90 

100       200         500          1,000      4,000    70,000 

FIGURE 4.1. Brahmi numerals.

At one time, there was speculation that the �gures past  had come from ei-

ther the forms of initial letters or syllables of number words of the third century

bc Brahmi alphabet. But they may have come from older, untraceable numerical

symbols.

A more �tting origin is the Devanagari script of Sanskrit, initially a spo-

ken language of the Punjab that later branched to the “Vedas” (knowledge), a written

medium for religious hymns and invocations generally in verse form or short sen-

tences called sūtras. Numerals are integral to those Vedas, which usually referred

to achievements of Indian gods who destroyed ninety-nine cities or gave away sixty
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thousand horses. Some Vedic texts account for sets of numbers as high as a trillion.


Later Vedas were considered sacred knowledge, including elaborate astronomy tim-

ing accounts for daily sacri�ces. And some Vedas used successive powers of ten to

describe large numbers.

Unfortunately, due to the harsh subtropical climate, much of pre–�rst millen-

nium bc Indian mathematics legacy is untraceable. With very few archaeological

clues, the origins of Indian numerals must rely on a small wealth of writing that sur-

vives almost exclusively in the form of stone inscriptions. So the story of how our

numbers evolved is very uncertain. Still, some of those stone epigraphs used deci-

mal place-value numerals, providing some evidence that ancient India was familiar

with a kind of place-value numerical system.

It may seem a stretch to say this a er examining the Sanskrit words for numbers,

but it is possible that some letter combinations of those number words contributed

suggestive shapes early in the morphographic history of our current script. (See �g-

ure ..)

1          2           3              4              5          6          7           8          9            0

ekah     dvau   tryah    catvarah    pañca    sat     sapta    ashta   nava    suunyá

Hindu-Arabic

Sanskrit words

Sanskrit script

FIGURE 4.2 Hindu-Arabic versus Sanskrit.

¿ese numerals give a more complete picture of a place-value system as well as

a system that treats zero as a number. In a place-value system, the numerals have

di�erent values depending on their position relative to each other. Today’s global

scienti�c community has adopted the Hindu-Arabic system. ¿ere are, however,

minor andmajor variations in the scripts used in theMiddle and Far East.¿e East-

ern Arabic or Indic script is used in present-day Pakistan and Iran. Other systems,

such as the Japanese, use both the Hindu-Arabic and kanji characters, the Arabic

in horizontal writing and the Chinese in vertical writing. ¿en, separate from the
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kanji numerals is a special script called daiji, which is used in legal and �nancial

documents to prevent anyone from adding a stroke to turn, say, a two into a three.

Figure . represents a partialmorphography of ourmodernHindu-Arabic script,

starting with the Brahmi.

 
Brahmi	  

	  
	  
	  

	  
Gwalior	  

	  
	  
	  

	  	  	  	  	  	   	  	  	  	  	   	  
West	  Arabic	  (Gobar)	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  East	  Arabic	  (Modern	  Turkish)	  	  	  	  	  	  	  	  	  	  	  	  Sanskrit	  (Devanagari)	  
	  
	  
	  
	  

	  
11th	  Century	  (Apices)	  

	  
	  
	  
	  

	  
15th	  Century	  (Anon)	  

	  
	  
	  
	  

	  
16th	  Century	  (Dürer)	  

	  
	  FIGURE 4.3. Modern numerals genealogy. Redrawn from Karl Menninger, Number

Words and Number Symbols: A Cultural History of Numbers, trans. Paul Broneer
(Cambridge, MA: MIT Press, 1969), 418.

History has very few well-de�ned, unbroken straight lines. ¿e morphography

of modern numerals is far more shattered than the �ow chart in �gure . suggests.

¿e mystery here is that there is no clearly established, smoothly de�ned lineage

from early scripts to modern ones. ¿e materials and tools for writing, as well as

scribing mistakes, must have shaped the numerals beyond any resemblance to their

originals.
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I suspect, without any veri�able evidence, that �nger counting is responsible

for the design and evolution of number symbols. Imagine going to market to buy a

�sh in Ur during Abraham’s time. You would probably raise one �nger as a signal

that you want only one �sh, two �ngers for two �sh. ¿e orientation of your hand

could be vertical or horizontal. ¿us, the symbol for “” could be designated by

two vertical �ngers or two horizontal �ngers, which are rapidly sketched as two

horizontal lines that over time become morphographically corrupted by faster and

faster representations.

We do not know the true origins of the Brahmi system; nor do we know of the

many other intermediate paths ignored by the historic record. Did the third century

bc Brahmi system come from the Brahmi alphabet, some other alphabet, the old

Egyptian numerals, an earlier Indus culture, or from more ancient numerals? Did

the Gwalior numerals, a place-value system, come from the Chinese, as the mathe-

matical historian Lay Yong Lam claims?

She tells us that by the �rst century ad the

Chinese had a decimal-based place-value system with nine signs, and a concept of

zero.

George Gheverghese Joseph tells us in his book ¿e Crest of the Peacock that,

aside from the Babylonians’ clever sexagesimal (base ) positional system, our

modern place-value system is exclusively Indian.

And yet Robert Kaplan, in his

book ¿e Nothing ¿at Is: A Natural History of Zero, tells us that our system was

Indian, but originated with the Greeks. Without solid written proof, there is no way

of �lling in the blanks of history. All we really know is that somehow, in some time

and place, the clever place-value idea was transmitted from the Indians to the Arabs

and later to the Europeans.

¿e French mathematician Pierre Simon Laplace con�dently claimed:

It is India that gave us the ingenious method of expressing all numbers

by means of ten symbols, each symbol receiving a value of position as

well as an absolute value; a profound and important idea which appears

so simple to us now that we ignore its true merit. But its very simplicity

and the great ease which it has lent to all computations put our arith-

metic in the �rst rank of useful inventions; and we shall appreciate the
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grandeur of this achievement the more when we remember that it es-

caped the genius of Archimedes and Apollonius, two of the greatest

men produced by antiquity.


¿e Eastern Arabic numerals are still used in Arab countries east of Egypt, where

they are known as Indian numerals. In Morocco, where Western Arabic (Gobar)

is used, the numerals are called Arabic.

¿e apices are similar to the Gobar nu-

merals and seem to be of Indian origin, though there is no direct evidence. ¿e

Gobars are known to be Indian, but the apices have always been in question. ¿e

early-twentieth-century German historian of mathematics Moritz Cantor claimed

that Boethius created the apices from the Gobars and that the earlier Indian nu-

merals found their way to Alexandria before the end of the fourth century, when

its commerce connections with India ended.

Cantor also claimed that the Indian

numerals (without zero) arrived in Christian Europe more than a century before

al-Khwārizmı̄’s Algorismwas translated into Latin; that would have put its arrival in

the eleventh century.


¿ough there are variations from East to West, we must wonder why it is that

during their long migration in all directions from India, from culture to culture,

country to country, for over � een hundred years their basic scripts have remained

almost entirely unchanged. ¿e importance here is that though the symbols them-

selvesmay look di�erent, each systembeyond the Brahmi uses place-values for pow-

ers of  and a zero.¿e Brahmi was not a developed place-value system. It had sep-

arate symbols for , , , ,. . . ,  and , , , ,. . . , ,. A Brahmi

would not write the number two hundred and twenty-two as , which would be

done in a place-value system, but rather as . ¿at is because is the Brahmi

symbol for  and is the symbol for .


¿e question remains: How did theWestern system of numerals with zero come

to be? To answer, we should �rst turn to �nger counting, the dust board and the

abacus.

At some time in the �rst half of the second millennium, merchants did their

counting and simple arithmetic by �nger bending.¿emerchant would hold up his
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hands with palms facing outward and indicate numbers according to schemes like

the following (�gure .):

FIGURE 4.4. Finger counting from a page of Luca Pacioli’s Summa de Arithmetica,
published in 1494.

. On the le hand;

To indicate the number , half close the th �nger only;

. . . , the th and th �ngers only;
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. . . , the rd th and th �ngers only;

. . . , the rd and th �ngers only;

. . . , the rd �nger only;

. . . , the th �nger only;

. . . , close the th �nger only;

. . . , the th and th �ngers only;

. . . , the rd th and th �ngers only.

. Still on the le hand, a di�erent set of symbols would indicate the numbers

from  to . For example, to indicate , place the tip of the fore�nger at the bottom

of the thumb, so the resulting �gure resembles the Greek letter δ that, as a number,

indicates .


Such hand symbols provided nothing more than a numerical gesture language

for merchants ignorant of each other’s language, for there were no arithmetical cal-

culations to come of it. Hand signals are still in use at the New York Mercantile Ex-

change, the American Stock Exchange, and other security exchanges, where “open

outcry” hand signals indicate buy and sell orders: traders hold up �ngers with palms

facing toward the body to buy, and �ngers facing away from the body to sell in com-

plex gestures that can indicate a wide range of trade possibilities.

I am reminded of an adventure I once had almost half a century agowhile travel-

ing to Cabruta on the Orinoco in Venezuela. I woke early one morning on a market

day when everyone came to the village square to drink co�ee. Panares, the indige-

nous peoples of the region, sold parrots, monkeys, baby ocelots, and river dolphin.

I learned that in the Panares language, the words for parts of the body were used to

indicate numbers. ¿e word for hand meant �ve; the words that expressed “other

hand” meant six; the words that expressed “both hands” meant ten. And there were

other body part expressions such as “foot,” and “other foot,” and “both feet” that gave

higher number values—I don’t recall what, but would guess , , and .

¿e capacity for humans to add andmultiply must have begun with somemark-

ing scheme, whether from counting �ngers, stones, or something more imaginary.
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Early stages of counting must have been done concretely, by pointing to the ob-

jects one-by-one. Remnants of Aztec languages use numbers such as one stone, two

stones, three stones, and so on. ¿ere are South Paci�c languages that count one

fruit, two fruit, and three fruit. In time, however, counting—in terms of such spe-

ci�c groups of objects such as �ngers, stones, fruit, and grains—developed to an

abstract stage, where the character of the objects being counted was no longer im-

portant. ¿is was mathematics. ¿e formation of the idea of number in the abstract

sense developed as a result of repeated counting on �ngers or by some othermarking

scheme.

Wehave strong evidence suggesting that all number systems evolved fromcount-

ing �ngers, toes, and other body parts. Children naturally use their �ngers as the set

into which they make a one-to-one correspondence with the names of numbers.

Perhaps it is essential for arithmetic development.

¿e Yupno, an Aboriginal tribe living in the remote highlands of New Guinea,

count to thirty-three using an elaborate system that counts each �nger in a given

order, then counts body parts, alternating from one side to the other.

¿ere is a

de�nite advantage to the Yupno counting system. When American children count

on their �ngers they start with a �st, raise each �nger in succession, and stop at

the �nal count. In the end, the number of �ngers remaining in raised position is the

answer. It presupposes no de�nite ordering: the child could start with any �nger and

raise any other �nger that is not raised, though there are some cultural standards.

Since the Yupno system requires counting in a de�nite order, it has an advantage:

the answer is simply associated with the last body part in the count.

Back in the days when writing was inconvenient in themarketplace, �nger reck-

oning was common. Under the historical evidence of the s, the Americanmath-

ematicianDavidEugene Smithwrote, “¿egeneral purposes of digital notationwere

to aid in bargaining at the great international fairs with one whose language was not

understood, to remember numbers in computing on the abacus, and to perform

simple calculations.”

¿e only complete record of ancient �nger counting in ex-

istence is the codex, De computo vel loquela digitorum (On Calculating and Speak-
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ing with Fingers), written by Venerable Bede, an eighth-century Benedictine monk

renowned among Medieval scholars for, among other things, his calculation of the

varying date of Easter Sunday, which was designed to never fall on the same day

as the Jewish Passover. Since all other Church holidays are determined by Easter,

Bede’s calculations were considered signi�cant. Bede illustrates how one can indi-

cate numbers from  to  million by simply extending and bending �ngers.

Finger

notation leads to �nger counting, which in turn leads to �nger computation. Indeed,

we don’t need to know the multiplication table beyond  �  in order to multiply
two numbers together. Multiplication of small numbers can be reduced to counting

�ngers, multiplying by  and adding . For example, to multiply  by , subtract 

from both numbers to get  and . Raise one �nger on the le hand and three �ngers

on the right. Count the raised �ngers ( +  = ) and multiply by  to get . Now
multiply the bent �ngers on each hand ( �  = ) and add the result to . You get
.


To multiply two numbers between  and , subtract  from each; represent

those two numbers by raising �ngers. Count the raised �ngers and multiply by .

Add the result to the product of the number of raised �ngers on each hand and then

add . For example, tomultiply  by , subtract  from each to get  and . Raise

two �ngers on the le hand and four on the right. Count the number of raised �n-

gers ( +  = ) and multiply by  to get . Multiply the number of raised �ngers
on each hand ( �  = ). Add , , and  to get .

Sixteenth-century texts show how this simplemultiplication is carried out when

writing is available.

¿eymay even suggest the origin of the symbol formultiplica-

tion. If you want to multiply  and , form the compliments,  and , by subtracting

each number from .Nowwrite the four numbers on the square grid as pictured. To

get the answer, , subtract  from  to get the , in the tens column.¿en multiply

the two numbers in the right column to get the .

6 4

8 2

4 8
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In What Counts: How Every Brain Is Hardwired for Math, Brian Butterworth

asks the question, why is the le parietal lobe (the area of the brain where active

movement of �ngers is concentrated) also the area devoted to calculation?

Could

it be that moving �ngers is as necessary for counting as the eye is for seeing? If

so, Butterworth’s question—could it be that calculating ability comes from what we

do with our �ngers?—has an answer. His hypothesis is that it does. To come close

to an answer, we need to put together several pieces of the �nger puzzle. Wilder

Pen�eld’s famous mapping of the motor cortex (the part of the brain that controls

motor functioning of the body) showed that the cells that control adjacent body

parts are adjacent in the motor cortex.


But there is more. Body parts that require more complex movement take up

larger areas of the brain. Smaller body parts that require more complicated move-

ments, such as the �ngers, have a larger representation in the motor cortex than

larger body parts that require less intricate movements, such as the arms. Another

important consideration comes from extraordinarily surprising results of research

with people who use Braille (and hence their �ngers) to read.¿ey have a largermo-

tor cortex representation in the area serving the �nger. Does the same phenomenon

happen in the motor cortex of a person who plays the piano? A court stenographer?

So my granddaughter may have been right a er all: it may be that we have �ve

�ngers on each hand “so we can count right.”

¿e principle of �nger counting carries over to pebble markings that, in turn,

may have led to sand reckonings and abaci. I say, “may have,” only because there is

no reliable evidence to support such a claim beyond some late historical legends.

But it is a thought to consider. It is far easier to count one hundred pebbles than to

count one hundred scattered grazing sheep. And it is far easier to count ten heaps

of pebbles, each containing ten pebbles, than to count one hundred pebbles. Egyp-

tian, Greek, and Chinese did their ordinary calculations by such a pebble-counting

technique that used di�erent-sized pebbles. Each pebble of one size represented a

pile containing pebbles of a smaller size, so that, say, ten pebbles might represent
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one hundred smaller pebbles. ¿e system evolved into one that had no need to dis-

tinguish between sizes, because the pebble counter learned to place pebbles repre-

senting tens in a di�erent place from those representing ones.

¿is may not seem like an exceedingly advanced thought, but it promptly sug-

gests the concept of the abacus. Early abaci were simply pebble-counting schemes,

where the pebbles were placed along lines: lines of ones, tens, hundreds,. . .A pile of

four hundred and twenty-three pebbles may not be practical to count, but if each

large pebble represented a hundred, each medium-size pebble represented ten and

each small pebble represented one, then four large pebbles, two medium-size peb-

bles, and three small pebbles would represent . (See �gure ..)

 

 

FIGURE 4.5. The lines for pebble-reckoning were drawn in sand. Source: Georges
Ifrah, The Universal History of Computing: From the Abacus to the Quantum Computer

(New York: John Wiley & Sons, 2001), 11.

A dust board, more like a shallow sand box, was used because the methods re-

quired the moving of numbers around in the calculation and rubbing some out as

the calculation proceeded. Aswith a grammar student’s slate and eraser of a hundred

years ago, or on a white board of this century, numbers could be written, moved, or

rubbed out in the course of calculation.

Counting boards go back as far as Babylonian times. However, we have no actual

specimens, except a few from Greece. In , a white marble tablet (now at the

National Museum in Athens) incised with parallel columns was found on the Greek

island of Salamis, giving us direct evidence that counting boards using pebbles go

back to at least  bc. We also have indirect evidence that counting boards go at

least as far back as the fourth century bc by virtue of the Darius Vase. (See �gure

..)
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FIGURE 4.6. A royal treasurer of Darius’s court and his counting board. Fourth century
BC. The man standing is bringing in the booty from the conquered. The counters here
are not placed in columns, but directly beneath the symbols for numerical rank. In his

left hand is something that looks like an iPad, but it is a pad with a record of the
amounts that are found successively on the abacus. Source: Detail from Darius Vase

(Museo Nationale, Naples).

For Babylonian, Greek, and Roman counting boards, number representation

followed the laws of place-value.¿ere were no symbols for zero; none were needed,

for an empty column would indicate that a place rank was held with no numerical

value. ¿is idea led to the next: beads threaded on stretched wires—the more mod-

ern abacus.

¿e Roman abacus had metal balls sliding in grooves.

¿e abacus in �gure .

has eight decimal positions, marked (from right to le ) I, X, C,ª,. . . corresponding

to units, tens, hundreds, thousands,. . . all the way up to  million. Ignore the �rst

two grooves on the right of �gure . for the moment.

Above the markings are

single metal balls or counters sliding in their own grooves. For a digit less than ,

the abacist would move the corresponding number of counters toward the letter

markings. For a digit representing a number between  and , the abacist would

�rst move the single counter corresponding to that digit upward to represent , and

then move other counters on that line upward to complete the representation. All

numbers below  million could be represented this way. For instance, �gure .

illustrates the con�guration for the number ,.
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FIGURE 4.7. A modern replica of a Roman abacus.

	  

5        3        7        2 

(-1,0)(-2,0)(-3,0)

∞       C        X	  	  	  	  	  	  	  	  	  	  I	  

FIGURE 4.8. Configuration for the number 5,372.

Clearly inspired by the abacus, numbers in the tenth-century West were being

written as Roman letters of the alphabet in digital order. For example, , would

have been written as V.III.VII.II, mimicking the counters of the four slots of the

abacus marked byª, C, X, and I in �gure ..

¿en came Gerbert’s counting board. Born in the Auvergne of south-central

France in , Gerbert was educated in the monastery of St. Gerald of Aurillac. In

, he le the monastery to travel to Arab-ruled Spain, where for three years he

studied mathematics and was exposed to Arabic learning and acquaintance with

the Indian numerals. He returned to Rheims, and got a position at the cathedral

The Indian Gift 47



“Mazur” — // — : — page  — #

school to teach mathematics and abacus computation. His career took interesting

paths—teaching, then positions: �rst as abbot, then as archbishop, tutor to the son

of Emperor Otto III, advisor to the pope, and ultimately, at the relatively young age

of , pope. Gerbert d’Aurillac was his real name, but in the ill-omened year before

the turn of the new millennium, he became Pope Sylvester II.

¿e Gerbertian abacus enjoyed a brief period of popularity between the late

tenth and mid-twel h century. Very little is known about the original Gerbertian

abaci (none survive), but some recently discovered manuscripts are thought to be

exemplifyingGerbert’s abacus.

¿erecently discoveredEchternachmanuscript (ca.

 ad) in the Benedictine monastery at Echternach in east Luxembourg is one,

and the Computus manuscript (ca.  ad) written at ¿orney Abbey in Cam-

bridgeshire, England, is another.

Looking at a page of theComputus, we �nd that the columns of a counting board

were ranked by powers of . In �gure ., at the top of the sixth column from the

right, under C (= ,), we �nd a single “counter” labeled . (¿at would be a

symbol lookingmuch like Y on a real medieval counting board.)¿e original coun-

ters of Gerbert’s counting board were carved from the tips of horn; hence, possibly

because eachwas in approximately the shape of a conewith an apex, theywere called

“apices.”

¿ose apices were marked with strange symbols that looked very much

like our Indian numerals (the fourth tier down in the Hindu-Arabic numerical evo-

lution chart in �gure .). ¿ough the carved horns were merely aesthetic designs

with no particular arithmetic advantage, Gerbert ardently made hundreds of apices

from horn, whereas other abacus artisans a er himmade theirs out of the materials

used in making the counters for the Roman abacus: ivory, metal or glass.

¿e idea of replacing a group of pebbles of a particular rank with a single ob-

ject marked by a symbol was novel; those apices were the �rst to appear in the

West.

To us, who think in terms of Hindu-Arabic numerals, the Gerbertian count-

ing board may seem to be the natural discovery-consequence of the Roman count-

ing board, but, back then, it was one of those rare grand leaps in the history of symbol

progress. Gerbert certainly had heard about the marvelous possibilities of the Arab
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Continues
with higher
ranks (not
shown)

503,072

C X I C X I

5 3 7 2

FIGURE 4.9. Gerbertian counting board showing apices 5, 3, 7, and 2 ranked
C(= 


), I(= ),X(= 


), and I(= ) respectively. Computus manuscript. Written at

Thorney Abbey, Cambridgeshire, ca. AD 1110. Oxford, St. John’s College MS 17 Fols.
42r. Source: http://digital.library.mcgill.ca/ms-17/folio.php?p=42r&showitem=

42r_8Math_1cHinduNumerals#. Reproduced by permission of the President and
Fellows of St. John’s College, Oxford.
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ideas. He must have been aware of the writing computation advantages behind the

new system of numerals, but his board was used merely as a computation tool that

had no need for written computations. Because the real meaning of the new numer-

als were not well-understood in the West, Gerbert’s disciples went on using those

mysterious symbols without regard to their true potential powers.

¿ose same symbols morphed through a variety of forms, sometimes rotating

through di�erent angles, as if it was simply a matter of not caring whether or not it

was right-side up or down.¿is may have been caused by the nature of the counting

board, which had no serious orientation, nor any established right way—the abacist

may see it di�erently than someone watching from the other side of the board. In

�gure . (the Computus manuscript), the numbers  and  can be seen as written

two di�erent ways on the same manuscript. But whatever the form looked like, the

system was the same; with just nine symbols, every number could be represented,

and every number could be painted, without taking the brush o� the surface.

Between the tenth and twel h centuries, the abacus board, as either a sheet of

parchment or a grooved counting table, with its vertical columns ranking the powers

of ten was themainmethod of studying practical arithmetic inWestern Europe.¿e

process of the Gerbertian abacus, called “algorism,” was mimicked using quill and

parchment.
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Chapter 5

Arrival in Europe

1 + 1 is abbreviated into 2, a new and “arbitrary” symbol. “Arbi-
trary,” that is, any other would have done as well. It is 2 that stands
for 1 + 1, and not <, 3, ª, or anything else, because certain Hindoos
chose that it should be so.

—Augustus De Morgan1

Curiously, few centuries have passed since our wonderful current number system

was brought to Europe. ¿ere is a dispute over whether or not the person most re-

sponsible was Leonardo Pisano Bigollo (ca. –ca. ), one of the great math-

ematicians of his time, whose fame comes mostly from that celebrated problem of

how rabbits multiply, a man more memorably known to us as Fibonacci. He was

certainly not the discoverer of the answer to the rabbit question, which was asked in

ancient India since about the turn of the �rst millennium to describe the metrical

structure and underlying rhythm found in Sanskrit poetry.

A portrait of Fibonacci exists (�gure .). It was painted in the middle of the

thirteenth century. He looks like a boy with very pleasant features, big eyes, small

mouth, and a nose for curiosities. As a youngman, Fibonacci traveledwith his father

around theMediterranean,meeting priests, scholars, andmerchants in Egypt, Syria,

Greece, and Provence. He learned the number systems used in trade. Returning to

Pisa, he wrote his Liber abbaci (Book of the Calculations) in  and revised it in

.
 Liber abbaci was a book about how to calculate without an abacus, written

to convince Western tradesmen that the Arabic numeral system of calculating was

superior to the then-used Roman system. It was not the �rst such Western book to
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describe Arabic numerals. ¿e Codex Vigilanus, the �rst Western (ca.  Spanish)

manuscript containing Arabic numerals, had already been available for  years

(see �gure .). And the Latin translation of al-Khwārizmı̄’s Algorism had appeared

in the twel h century.

FIGURE 5.1. Fibonacci.

¿e Liber abbaci, however, appeared some  years before the invention of

printing, at a timewhen there were no local public libraries, when knowledge spread

by word-of-mouth. In Italy, whereHindu-Arabic numerals had an early appearance,

it was the maestri d’abbaco, practitioners of commercial arithmetic, who peddled

the art in private and public tutorials of arithmetic, geometry, and algebra and who

wrote mediocre treatises on those subjects as displays of momentous knowledge.

¿ey copied from other manuscripts, o en changing problem values or tweaking

them to disguise their sources. Some seventy-�ve years a er the �rst appearance

of the Liber abbaci, students from all over Europe (Bohemians, Poles, Frenchmen,

Germans, and Spaniards) visiting intellectual centers such as Venice and Pisa spread

the word about Arabic numerals.

Algebra was not generally taught in the universities before the late seventeenth

century. In part, that was because universities were primarily places to train for the

clergy, or to become a doctor or lawyer. Instead,mathematics thrived in the bottegas,
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FIGURE 5.2. Codex Vigilanus.

the Northern Italian abacus schools of the fourteenth and � eenth centuries, where

maestri d’abbaco taught commercial arithmetic to merchants and artists in the ver-

nacular. ¿e name “abacus school” or “abacus tradition” comes from the fact that

students of such schools were studying mathematics in the style of Fibonacci’s Liber

abbaci, not from the abacus as a calculating tool. ¿e term “abbacist” applied to a

person skilled in calculating with Hindu-Arabic numerals, as opposed to those who

calculated with an abacus.

In mid-fourteenth-century Florence alone there were at

least , students attending the roughly twenty bottegas of the city. ¿e maestri

wrote attractively illustrated treatises with the solutions of hundreds of arithmetic

and algebra problems that o en went beyond the levels taught within the schools.


Charlemagne, the man who conquered almost all of Western Europe, the man

who became emperor of the Holy Roman Empire in , understood that Europe

had lagged behind the Arab countries in science and medicine. He ordered ev-

ery cathedral and monastery in his kingdom to open schools for public education.

Other than geometry and arithmetic, there was hardly any mathematics or science

taught at any of those schools. A er Charlemagne’s death, the curriculums focused

on Latin,music, and theology.

However, an inexplicable �ood of gi ed teachers and

inquisitive students advanced themedieval curriculum to the liberal arts: �rst to the

trivium, comprising grammar, logic, and rhetoric, and later to the quadrivium, to in-

clude arithmetic, geometry, music, and astronomy. Anyone who successfully went

through the trivium was a person of great learning.

Arrival in Europe 53



“Mazur” — // — : — page  — #

By the twel h century, just when the guilds were beginning to form, early ver-

sions of universities were opening. O en they were voluntarily formed and orga-

nized by teachers and students themselves, and reasonably independent of the cathe-

dral andmonastic schools. Of course, the teachers were all connected to the Church

because the ordained clergy of the time were the only ones who were already

educated.

Students of the universities weremere children, o en younger than twelve.¿ey

would spend four years learning Latin grammar, for which, if successful, they would

be awarded a Master of Grammar degree. A Bachelor of Arts degree requiring suc-

cessful completion of the trivium would be more advanced and more honored. A

Master of Arts would require the successful completion of the quadrivium, another

three years. ¿at was the highest degree possible and very hard to achieve; it was a

license to teach, but the pay was poor.

For a long time, Fibonacci’s book the Liber abbaci was the only known compre-

hensive source for abacus methods, and so it may seem as though it was responsible

for bringing Hindu-Arabic numerals westward.

¿ere are current popular books

that claim he brought the Hindu-Arabic numerals to Europe. However, since the

s several historians have argued that books on calculation involving Hindu-

Arabic numerals that were around in Fibonacci’s time do not mention the Liber ab-

baci. And, more recently, in , the Danish mathematical historian Jens Høyrup

has argued that calculation books spread from Iberia and Provence to Northern

Italy, suggesting that Fibonacci was not the person responsible for bringing Hindu-

Arabic numbers to Europe.


In the preface to the Liber abbaci, Fibonacci writes:

As my father was a public o�cial away from our homeland in the Bu-

gia customshouse established for the Pisan merchants who frequently

gathered there, he had me in my youth brought to him, looking to �nd

for me a useful and comfortable future; there he wanted me to be in

the study of mathematics and to be taught for some days. ¿ere from a

marvelous instruction in the art of nine Indian �gures. . .
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Only nine Indian �gures are mentioned. So “” was not included, at least not

included as a number.

Høyrup claims that Hindu-Arabic numerals had already been introduced to the

Latin culture by the early twel h century through Iberia and Provence, but that

twentieth-century historians credited Fibonacci for the introduction because by his

time commercial teaching in Italy was still based on Roman numerals. ¿e confu-

sion seems to rest on the fact that Fibonacci’s book consistently uses Arabic numer-

als in talking about familiar mathematics.

Høyrup goes on to tell us that the Italian abbaco algebra inspiration did not come

from Fibonacci, but rather from non-Italian sources and that Italian merchants al-

ready had an urgent need for such things as were taught in the abbaco tradition. He

continues: “What we can know from the analysis is that the abbaco tradition of the

outgoing thirteenth century was no Fibonacci tradition, even though it was already

a tradition.”

Ahundred years ago,DavidEugene Smith andLouisCharlesKarpinski, renowned

scholars of the history of mathematics, wrote:

So familiar are we with the numerals that bear the misleading name

of Arabic, and so extensive is their use in Europe and the Americas,

that it is di�cult for us to realize that their general acceptance in the

transactions of commerce is a matter of only the last four centuries and

that they are unknown to a very large part of the human race to-day.


Smith and Karpinski went on to point out how strange it is that the system had

such a struggle to become the standard of the entire world when every other system

was so crude and awkward.We tend not to think of our wonderful (isn’t everyone’s?)

system as being so recent, but surprisingly few centuries have passed since the sys-

tem was passed on to Europe.

In Fibonacci’s day, there were numerous texts on calculations.¿ose texts, how-

ever, were scholarly books pitched to people who wanted to learn arithmetica, the

theory and philosophy of numbers and calculation, or to those who wanted to mas-

ter the Church calendar.

In his PhD research, Warren Van Egmond found that

many of those books did not use the word “abacus” in titles, preferring the word
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“algorisms,” which more directly implied an explanation of Hindu-Arabic numerals

and their computing algorisms.


Although it is likely that Fibonacci’s book had introduced Arabic numerals to

some parts of European society, it is also likely that travelers and merchants in Italy

already knew those numerals. And surely there were other books written on Ara-

bic numerals as much as half a century before Fibonacci’s Liber abbaci. ¿e twel h-

century Spanish biblical commentator, scientist, and rabbi Abraham ben Ezra wrote

¿e Book of the Unit to describe the Arabic symbols and¿e Book of the Number to

describe the decimal systemwith place-values and zero.

His books would not have

done much for spreading the word of Arabic mathematics to the public merchants,

but they surely helped to get the attention of European scholars. At about the time

Ben Ezra was writing his books about place-values and zero, Johannes Hispalensis,

one of themain translators at the famous Toledo School of Translators, wrote what is

considered to be the earliest knownWestern descriptions of Indian positional nota-

tion in hisArithmeticae practicae in libro algorithms (Book of Algorithms on Practical

Arithmetic).

In his Short Account of the History of Mathematics, the early-twentieth-century

British mathematician and historian W. W. Rouse Ball tells us:

¿ough Leonardo introduced the use of Arabic numerals into com-

mercial a�airs, it is probable that a knowledge of them as current in the

East was previously not uncommon among travellers and merchants,

for the intercourse between Christians and Mohammedans was su�-

ciently close for each to learn something of the language and common

practices of the other. We can also hardly suppose that the Italian mer-

chants were ignorant of the method of keeping accounts used by some

of their best customers; and we must recollect, too, that there were nu-

merous Christians who had escaped or been ransomed a er serving

the Mohammedans as slaves.


At the beginning of the fourteenth century, bankers of Florence were forbidden

to use Arabic numerals, and the common use of such numerals did not happen be-

fore the sixteenth century. In , the City Council of Florence issued the Statuto

Dell’Arte di Cambio, which outlawed the use of the Indian system for �nancial ac-
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counts and required all money records to be accounted for in letters, as is required

for bank checks today. ¿e motive was security against the fraud of turning a  into

a  or a  by simply adding a horn or a tail.

¿e Statuto Dell’Arte di Cambio could not a�ect the day-to-day dealings in the

marketplaces, bazaars, and trading houses where people could make calculations

using the Indian system and translating their �nal tallies into Roman numerals. But

it was not so much the Statuto that hindered the new Indian system. Rather, it was

the expense of paper and erasable media needed for scribbling calculations. A er a

calculation, such as long divisionwith steps that had to be crossed out, the paper was

useless for the next calculations. ¿e old system required no new expenses beyond

acquiring a counting board, abacus, or sand table.

Typus Arithmeticae
In �gure ., we �nd Pythagoras at the counting board and Boethius computing

with Indian numerals. Why Pythagoras? Because in the Middle Ages, Pythagoras

was falsely considered to be the inventor of the abacus.

Caliph stories provide the backdrops for somany anecdotal yarns that we some-

times forget that they aremostly theWestern folkmyths of an exotic bygone civiliza-

tion. Perhaps it is because the Arabs of Baghdad accumulated unbelievable wealth

from its conquests and ports on the Persian Gulf, which propelled its trade between

China, India, and Russia in the East and all of Europe in the West. ¿e following

story of how the Indian numerals came to the Arabs may be apocryphal, as it comes

from the Ta’rikh al-hukama (Chronology of the Scholars), a mid-thirteenth-century

book written by Ibn al-Qi i quoting much earlier sources.

¿e Caliph al-Mansur received an Indian ambassador at the imperial residence

in Baghdad.

¿e year was  ad. ¿e ambassador’s gi to the Caliph was the

Brāhmasphut.asiddhānta (Correctly Established Doctrine of Brahma), a book writ-

ten inSanskrit on astronomy by the Indian mathematician and astronomer Brah-

magupta that had been written almost  years earlier. Al-Mansur was a great pro-

ponent of the dissemination of literature and scholarship, and so he commissioned a
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FIGURE 5.3. Typus Arithmeticae. A woodcut illustration from Mararita Philosophica of
Gregor Reisch, which first appeared in 1503 and was used for half a century as an
encyclopedia textbook in higher schools. The illustration depicts two calculators

(purportedly Pythagoras at the counting board and Boethius computing in the Indian
system) in a competition administered by the woman figure personifying Arithmetic.

Source: Library of Congress.

translation of the Brāhmasphut.asiddhānta into Arabic. Most likely, the story is

legend, because there must have been many sources for Arab astronomy. Legend or

not, it was probably this book that prompted Arab scholars to pursue astronomy.

Our zero, as a number as well as a placeholder, probably appeared for the �rst

time in book form sometime close to the year  ad. It is in Brahmagupta’s Brah-

masphutmasiddhantawhere we �rst �nd the rules for using zerowith negative num-

bers (“debts”) and positive numbers (“properties”). Brahmagupta marked zero as a

solitary black dot to represent the number that results from subtracting a number

from itself. Zero was not just a placeholder; for what may have been the �rst time

ever, there was a number to represent nothing.
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Not much is known about Brahmagupta. He was probably born in Bhillamala,

in southern India, but we do know that sometime in his youth he moved  miles

southeast toUjjain to work at the center ofmathematical and astronomical research,

founded by the sixth-century Indian mathematician-astronomer Aryabhatta. He

worked in advanced astronomy, but also developed algorithms for �nding square

roots and solutions to quadratic equations.

Notmuch is known about any of the Indianmathematicians of Aryabhatta’s time

because the historical record of Indian writing of that time is scarce. In those years

of ancient India, Hindus believed in a divine or spiritual origin to almost every-

thing, including science. Astronomy and mathematics would have been attributed

to Brahma, who created the world, thus bypassing any recognition of the actual hu-

mans who were directly responsible for scienti�c discoveries.


W. W. Rouse Ball felt that once the Arabs le the desert to settle in cities such

as Baghdad and Damascus they became subject to diseases for which they had no

immunities. At the time, Greek and Jewish medicine was far more advanced than

Arabian. For that matter, their knowledge of all science was also far more advanced,

based on the works of Aristotle and Galen. So the caliphs encouraged Greek and

Jewish doctors to come to teach their science and preserve the traditions of their

cra . “¿e scienti�c knowledge of the Arabs,” Ball said, “was at �rst derived from

the Greek doctors who attended the caliphs at Bagdad.”


At around , the caliph Harun al-Rachid ordered translations of Greek works

into Arabic, and that order was followed by his successor, the caliph al-Mamun, who

sent a delegation to the great libraries of Constantinople and India to copy hundreds

of Greek and Hindi works. On the delegation’s return, an army of Syrian clerks was

ordered to work on translating the works of Euclid, Archimedes, Apollonius, and

Ptolemy into Arabic and Syrian.

How fortunate that they collected those works, for they are now the only copies

extant. Ball also mentions, as a point of curiosity, that Diophantus’s works did not

seem to be noticed for  years a er the initial accelerated tradition of translating

foreign works into Arabic. By that time, the Arabs were already quite familiar with

an algebraic notation process of their own.
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Chapter 6

The Arab Gift

Abu JafarMuhammad ibnMusa al-Khwārizmı̄’s portrait (�gure .), popularized by

a  Soviet Union postage stamp commemorating the twelve-hundredth anniver-

sary of his birth, shows a bearded man with furrowed brow and dreaming eyes. Isn’t

it extraordinary that we can know . . .hmm . . .what a particular ninth-century per-

son looks like with little knowledge of his biography? ¿e truth is that we hardly

know what he really looked like. Al-Khwārizmı̄, who was the greatest Arab mathe-

matician of his day, learned of the new Indian numbers from the Arabic translation

of Brahmagupta’s Brahmasphutasiddhanta, and wrote a textbook on arithmetic us-

ing the new Indian numbers.

In around  ad, al-Khwārizmı̄ wrote¿e Book of

Restoration and Equalization, a book on how to solve equations (in particular, solv-

ing for the positive roots of quadratic equations).

Its title in Arabic is Hisab aljabr

w’almuqabala, from which we get the word “algebra.” It was translated into Latin

sometime during the middle of the twel h century under the title Algebra et Almu-

cabala, and that is how the term “algebra” came to be understood as what it is today.


It survives as the earliest Arabic book on algebra.

Al-Khwārizmı̄’s original arithmetic book in Arabic no longer survives. It ap-

peared in Spain at the turn of the twel h century, and there was translated into

Latin by the English Arabist Robert of Chester.

¿at translation (discovered in the

nineteenth century) and others of that period were the earliest known introductions

of the Hindu-Arabic numerals to Europe, perhaps as much as a century earlier than

Fibonacci’s Liber abbaci.
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FIGURE 6.1. Al-Khwārizmı̄.

Al-Khwārizmı̄’sOn theCalculationwithHinduNumerals, written sometimenear

 ad, may have been responsible for spreading the Indian system of numeration

throughout the Arab world in the ninth century, and then to Europe a er a series

of Latin translations were made available in the twel h century.


¿e years between  and  in Persia were endowed with scienti�c and artis-

tic richness. Sometime just before the turn of the ninth century, Harun al-Rashid,

the � h Arab Abbasid Caliph of Iraq, founded a library and translation center in

Baghdad that became known as the Bayt Ul-Hikma (¿e House of Wisdom) that

turned into amajor intellectual center during the IslamicGoldenAge of the next �ve

hundred years. Works of astrology, mathematics, agriculture, medicine, and philos-

ophy were translated from Greek, Chinese, and other languages into Arabic at the

Bayt Ul-Hikma. Al-Khwārizmı̄ worked there, with an interest in all papers origi-

nating in India, including Brahmagupta’s Brahmasphutmasiddhanta, which provi-

dentially survived the library worms. While deciphering the mysterious characters

and translating the book into Arabic, he discovered something of astounding signif-

icance: a way of doing arithmetic that was far simpler than the cumbersome Arab

technique.

Until then, Arabs across Mesopotamia had been doing their arithmetic by using

either �nger counting, or the abacus, or the complicated Roman numeral system,

or the messy scheme of writing numbers as words, even when making elaborate

calculations of star positions.
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In theHindiwritings of theBrahmasphutmasiddhanta, al-Khwārizmı̄might have

seen a superbway to easily represent any counting number that could ever be needed

with just ten symbols.Hemight have known about theBabylonian sexagesimal (base

) system, and thereby seen away of representing a decimal system.Although deci-

mals were not in vogue in that EarlyMiddleAgesArabworld of commerce, hemight

have seen the idea as a brilliant vanguard system that deserved, if not the world’s at-

tention, then at least serious scholarly interest.

He might have seen that strange black dot that meant nothing, the quantity of

nothing. Anyone reading the Brahmasphutmasiddhantawould have been ba�ed by

it. Reading on, he might have been inspired by the concept of having numbers that

mark negative values as debt. A whole new in�nite collection of objects entered in

theworld of thought, objects symbolizing quantities less than nothing—the negative

numbers.

¿ere is a dubious story that al-Khwārizmı̄ traveled to India, where he came in

contact with Brahmagupta’s mathematical manuscripts. A more likely story, how-

ever, is one about the Indian astronomer Kanka, who visited the House of Wisdom

in Baghdad in  ad, and brought with him many manuscripts from India, in-

cluding the Brahmasphutasiddhanta.¿ismakes some sense, as al-Khwārizmı̄ was a

scholar in the House ofWisdomwho wrote his bookOn the Calculation with Hindu

Numerals some � y years a er Kanka’s visit. ¿at book was largely responsible for

spreading the Indian system of numeration throughout the Arab world as well as

Europe.

At that time, the Arabs had no numeral system of their own. In geographical

regions of the Arab world where both Arabic and Greek were spoken, the only sys-

tem used was either the Greek’s alphabetical or one derived from the Greek model

using mostly written Arabic words for numbers. ¿e new numerals were at times

described as Indian and at other times Arabic. Fibonacci clearly called the nine �g-

ures Indian in �rst lines of the �rst chapter of his Liber abbaci, which translates as:
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¿e nine Indian �gures are:

        .

With these nine �gures, and with the sign  which the Arabs call

zephyr any number whatsoever is written, as demonstrated below. A

number is a sum of units, and through the addition of them the num-

bers increase by stepswithout end. First, one composes fromunits those

numbers which are from one to ten. Second, from the tens are made

those numbers which are from ten up to one hundred. ¿ird, from the

hundreds are made those numbers which are from one hundred up to

one thousand. Fourth, from the thousands are made those numbers

from one thousand up to ten thousand, and thus by an unending se-

quence of steps, any number whatsoever is constructed by the joining

of the preceding numbers.

¿e confusion was quite possibly caused by the great variation of scripts used

to represent the nine �gures. By the next century, however, many of the scripts had

converged to a standard very close to the one we use today.

Yet Arab astronomical

tables continued to use alphabetic numerals for centuries a er the Arab conquest.

¿ere were no consistent uses of the Hindu-Arabic numerals in Islamic numerical

jottings.
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Chapter 7

Liber Abbaci

In the ninth century, the Indian �gures were still too new and too weird to spread

far from the monasteries and scholarly hubbubs. A er all, Europe did not know of a

numeral systemwith a zero, that single symbol that could be used to write an in�nite

range of numbers and at the same time represent nothing. ¿e Babylonian system

didn’t have one; neither did the Greek, nor the Roman.

It was not as if there were no commerce and travelers to bring the numerals to

Europe. ¿ere were plenty. It was that beast, zero—the stranger that caused enough

suspicion to slow universal acceptance of the new system for more than three hun-

dred years. Today, we accept innovations with such great speed that we hardly notice

how they radically a�ect our lives—the computer chip, cell phone, GPS, movies on

demand, medical instruments that extend life. It is staggeringly unbelievable that

it took more than three hundred years for Europe to catch on to one of the great-

est ideas ever devised to simplify human life. ¿ree hundred years! Where were the

Galileos, the Decarteses, or the Newtons of the High Middle Ages?

¿e di�culty is in distinguishing placeholder and number. Accepting zero as a

number representing the absence of quantity would have been a fantastically daring

idea.¿e number two, for example, is fairly easy to comprehend. It represents “two-

ness,” or the number that represents the counting of two objects. But “zero-ness”? A

number that counts no object?What could that possibly mean?¿e idea of zero as a

placeholder, however, is intricately connected to the notion of zero as a number that

represents nothing.¿e confusion is that the symbol for indicating when a position
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is empty is the same for the number that indicates a count of no objects. ¿e Indian

idea of nine symbols would not work without a tenth symbol to indicate when a

position had no entries. ¿at was part of the problem with the Babylonian place-

value system.

Fibonacci, however, was addressing the merchants at the docks, and in the mar-

ketplace as well as the court. In his Liber abbaci, he implies that the Indian numerals

were new to those merchants, for he wrote that he found out about the system as

a boy when his father (a public notary) took him to Bejaia (in present-day Alge-

ria), where he learned the art of abbaco.

He wrote that the “Latin race” was lacking

knowledge of the Indianmethod of arithmetic, and that other common arts of reck-

oning, such as the algorism and the apices, are “a kind of error in comparison to the

method of the Indians.”

¿ese were his honest beliefs.

It might seem surprising that Fibonacci, one of the greatest mathematicians of

his time, did not show any knowledge of earlier works that clearly speak of the In-

dian art of reckoning with the nine �gures.

Shouldn’t he have known about al-

Khwārizmı̄’sOn the Calculation of the Indians, which had been translated into Latin

by the early part of the previous century? Did he not know of the  admanuscript

at theMonastery of St. Martin at Albelda in Spain that said, “Wemust know that the

Indians have a most subtle talent and all other races yield to them in arithmetic and

geometry . . . ?” Did he not know about the manuscripts translated by the Toledo

School in northern Italy? Did he not know about the Gerbertian abacus that was

based on the nine Indian �gures? Wouldn’t he have known about the Greek-Latin

translation of Euclid’s Elementswritten somewhere in Tuscany that used the Eastern

forms of the Indian numeral script? Notaries just a hundred miles from Fibonacci’s

hometown of Pisa were already using Indian numerals.

From Toledo to Lyon to

Munich to Ireland, Latin books on calculation mentioned the numeration of the

Indians with nine letters and of how it represents all the numbers.

However, the question of who introduced and in�uenced the practice of reck-

oning with Indian numerals to Europe has no simple answer.¿e evidences are nu-

merous and diverse. Fibonacci was educated as a merchant in Pisa. In school, he
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was taught to write and count with Roman numerals on an abacus board. In his

apprenticeship, he learned how to calculate the prices of goods, how to deal with

weights and measures, and how to convert equivalent values of money. By the time

he arrived in Bejaia, he was already able to deal with the customary commercial

arithmetic of the abacus board. A er learning the methods of Indian numerals and

their related arithmetical operations, he recognized the advantage of Indian reck-

oning over those used in Pisa. On returning to Pisa, he had no reason to study Latin

texts on the Indian system he had already learned in Bejaia. ¿is may explain why

Fibonacci did not mention any knowledge of earlier works that clearly speak of the

Indian art of reckoning with the nine �gures.


Until recently, Fibonacci’s Liber abbaci was incontestably recognized by me-

dievalists to be the inspiration for introducing modern arithmetic to the West. In

, the mathematics historian Ra�aella Franci credited the Liber abbaci as “the

most important source for abacus teaching in Italy.”

Two years earlier, another em-

inent historian, Elisabetta Ulivi, claimed that abacus teaching texts, written in the

Tuscan vernacular, were taken from the two sources attributed to Fibonacci, the

Liber abbaci and the Practica geometria. And back in , Warren Van Egmond

catalogued a greatmany abacus texts written up to themiddle of the fourteenth cen-

tury that were directly descended from Liber abbaci, lending evidence to the spread

of Indian numerals in Italy and to their links with Fibonacci.

¿en (sometime before ) came Gino Arrighi’s discovery: a book he found

in the Biblioteca Reccardiana in Florence, Livero de l’abbecho (Book of the Abacus),

written in the Umbrian vernacular.

¿ere is no doubt that the Livero was written

in  (plus or minus a year) in Umbria. It is an anonymous text: the earliest extant

abacus text in the vernacular, a book that might have been modeled on an earlier

version, introduces itself by the words

Questo ène lo livero di l’abbecho secondo la oppenione demaiestro Leonardo
de la chasa degli �gluole Bonaçie da Pisa.

¿is is an abacus book that seconds the opinion of master Leonardo

from the house of sons of Bonacci of Pisa.
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From this, and other credible evidence, Franci advanced the idea that whoever the

Maestro Umbro author was, he might have altered the writing to �t the needs of his

readers. Fibonacci might be the Maestro Umbro himself, and perhaps the book is

really the lost Liber minoris guise (Book in a Smaller Sense), a book we know Fi-

bonacci wrote because he referred to it in his Liber abbaci. If true, the idea that he

is the founding father of Western arithmetic would be clinched. But Jens Høyrup

argues that if we alertly read past the introduction, we should “discover that it con-

tainsmaterial that is de�nitely not from Fibonacci.”

Franci argues, just because the

�rst part of Livero de l’abbecho is not from the Liber abbaci, that does not mean that

it does not bear a resemblance to the Liber abbaci.

Respectful of Høyrup’s careful reading, Franci altered some of her original views

on the nature of Fibonacci’s contributions to assert that abacus “authors may have

had access to Arabic sources di�erent from those used by Leonardo.”

She is cur-

rently studying two abacus treatises written in Pisa at the end of the thirteenth cen-

tury or the beginning of the fourteenth century that are closely inspired by the �rst

eight chapters of Liber abbaci.

¿ere is no doubt that the introduction of Indian numerals to the West took

place from the late tenth century onward; that does not automatically imply that

Hindu ways of calculation were introduced before Fibonacci. But, then again, ac-

cording to another eminentmathematics historian,Charles Burnett, thereweremany

abacus texts of the twel h century to indicate that Fibonacci was not a pioneer.


Fibonacci told us in the prologue of his Liber abbaci that he learned the nine

Indian �gures used in trade when traveling with his father, meeting merchants in

Egypt, Syria, Greece, and Provence. Provence?Wasn’t Provence inWestern Europe?

So howcould it be that tradewith Provence did not inspire Italian abacus arithmetic?

Høyrup blames what he calls the “principle of the great book,” which declares

that every book either contains its own originalities or owes its opinions to some

famous book that no longer exists. He writes:

Certain passages in the Liber abbaci show that the beginnings of ab-

bacus mathematics must be traced to an environment that already ex-
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isted in Fibonacci’s days—an environment he knew about and of which

he can be regarded an extraordinary early exponent, but no founding

father.


Fibonacci did not contribute anything to Indian numerals that was not already

known. He was, however, an excellent expositor of new and di�cult concepts. Per-

haps his talent as an expositor in�uenced a di�usional migration of the new system

from Italy into the rest of Europe. By themiddle of the thirteenth century, there were

several Latin texts introducing the new system to northern Europe. For example, the

Carmen de Algorismo was a very popular treatise, written by the French Minorite

friar Alexander de Villa Dei in  that explained the methods of computation in

 verses of dactylic hexameter:

Here begins the algorismus.

¿is new art is called the algorismus, in which

Out of these twice �ve �gures

         

of the Indians we derive such bene�t.


¿e Indian numerals were popular among the learned in the twel h and thir-

teenth centuries because they frequently appeared inmonasticmanuscripts. A Latin

translation by John of Seville, a member of the Toledo School of Translators, ap-

peared soon a erRobert of Chester’s, and then, in  an abridged version of Robert

of Chester’s book was catalogued at the library of the SalemAbbey in southern Ger-

many, the oldest evidence that al-Khwārizmı̄’s Algebra made its way to northern

Europe.

¿ere is also Johannes de Sacrobosco, who taught at the new University

in Paris and in  wrote Algorismus, a textbook on the Indian numerals and how

to calculate with them, which was widely used all over Europe. (See �gure ..)

So it seems as if the news of the newnumbersmigrated all over Europe for two or

three centuries before Fibonacci wrote his Liber abbaci. News, but not practice, and

therefore, not much use. One possible reason is that it was misunderstood. ¿ere

were attempts at adapting the Roman numerals to a place-value system. Roman

script was o en used in a place-value system without regard to the notion of a zero.
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¿e number  in the Roman system, for instance, would be XVI; this uses place-

value in the sense that XVI is not the same as XIV. Remember that the Romans also

had a counting board that distinguished the tens column from the �ves from the

units.

FIGURE 7.1. A passage from a 1523 copy of Johannes de Sacrobosco’s Algorismus. In
translation from the eighth line down, we have: Know that corresponding to the 9 units
there are 9 number symbols, as follows: 0 9 8 7 6 5 4 3 2 1. The tenth is called theca or
circulus or cifra or figura nihili, because it stands for nothing. But when placed in the

proper position it gives value to the others. Source: The Tomash Library on the History
of Computing.

How is it that medieval Europe failed to consider the value of an Indian-like

system, when merchants and accountants should have seen evidence of it in the

form of counting boards, and place-values in abacuses, and spoke of numbers in a

conceptually place-value pattern every day in the market place?

What was it that kept them from recognizing the bene�ts of the Indian system?

One possible answer is that it may have beenmore daunting than we think. Imagine

how hard it might be for us to learn to use, say, a Hebrew numbering system a er

being so comfortable with the Indian system. You know the bene�ts of a new system

only a er you have had a chance to use it.

By the end of the eleventh century, news of the Indian systemwas all over Europe

in the form of counters of the Gerbertian abacus marked with Indian numerals. So

why do we give so much credit to Fibonacci for introducing the Indian numerals to

Europe?

¿e debate over the origins of modern numerals had been whirling for almost a

hundred years before Smith andKarpinski published¿eHindu-Arabic Numerals in

. Smith and Karpinski say that the “general acceptance [of Indian numerals] in

the transactions of commerce is a matter of only the last four centuries.”

Webster’s

Dictionary lists  through  as Arabic numerals, yet we have a fragment of a  ad
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manuscript by Bishop Severus Sebokht of Nisibus—the Syrian scholar who lived

in the convent of Kenneshre on the Euphrates—that suggests a Hindu origin. ¿at

fragment, which is now in the Bibliothèque National de France (MS Syriac [BNF],

No. ), is the earliest-known extant reference to Hindu numerals outside of India:

I will omit all discussion of the science of the Indians,. . . of their sub-

tle discoveries in astronomy, discoveries that are more ingenious than

those of the Greeks and the Babylonians, and of their valuable meth-

ods of calculationwhich surpass description. I wish only to say that this

computation is done by means of nine signs. If those who believe, be-

cause they speak Greek, that they have arrived at the limits of science,

would read the Indian texts, they would be convinced, even if a little

late in the day, that there are others who know something as well as

they.


So the nine signs surely were known to Severus Sebokht, one of the leading pop-

ular transmitters of seventh-century Greek philosophy and science in Syria. ¿e

translated fragment above, besides its wry comment about others who speak Greek,

claims that we owe the idea of expressing all numbers by nine signs to the Hindus.


Sebokht assumed that the system came through Persia on its way west from

India.

More recently (if we can say that  is recent), the historian of medieval

astrology Richard Lemay wrote that al-Khwārizmı̄’s Arithmetic was translated into

Latin in three di�erent versions during the twel h century, along with his aljabr

wa’l-muqabala. “Al- Khwārizmı̄’s Astronomical Tables,” he writes, “was the most no-

table single channel through which the Hindu-Arabic system of numerals wasmade

known to the West,” most likely from al-Khwārizmı̄’s Arithmetic, where the Indians

are credited for the originality.


Among the Arabs, the nine numerals were also called “Indian letters” or “�g-

ures” (al-huruf al-hindi). One of the few positively dependable sources is the tenth-

century account in Meadows of Gold and Mines of Gems, the thirty-volume life’s

work of the Arab adventurer and storyteller Mas’údì (Abu’l-Hasan ‘Ali) published

in  ad.

Mas’údì wrote in the �rst chapter that he chose the title of his book

“in order to excite a desire and curiosity a er its contents, and to make the mind
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eager to become acquainted with history.”

Mas’údì was a curious and inquiring

fellow who collected histories of the Persians, Hindus, Jews, Romans, and the cul-

tures of Eastern civilizations. Born in Baghdad, Mas’údì traveled to India, Ceylon

(present-day Sri Lanka), across the Indian Ocean to Madagascar, and up the Red

Sea back to Egypt, Palestine, and Syria. In , we would have found him near the

Sea of Galilee in Tiberias; by , near the Mediterranean in Antioch or in Cilicia;

and two years later, in Damascus.

He dedicated his book as “a present to kings

and men of learning. Having treated in it on every subject which may be useful or

curious to learn, and on any knowledge which arose in the lapse of time.” Mas’údì

used the Hindu-Arabic numerals throughout his work, starting with a description

of Hosaïn, an astronomer who compiled astronomical tables and related wildly in-

accurate facts about the circumference and diameter of the earth.


Albelda de Iregua is a small town in northern Spain where the SanMartín de Al-

belda Benedictinemonastery now stands in ruins. In its tenth-century heyday, it was

the most important and advanced cultural center of Western Europe, quite possi-

bly because it was directly on the trade routes along the Ebro, connecting Castile

in the northwest with the Mediterranean. It had a copious library of the richest

collection of medieval Spanish literature available to the West, including the �rst

record of Arabic numerals from  to  in Western Europe. ¿e Etymologiae, a Latin

manuscript written in the monastery in  by Isidore of Seville, already showed

somewhat modern forms of the numerals, except for . Forms evolved over the

years, while basic styles and distinctive features converged toward a standard. Pin-

pointing an exact time of convergence may be impossible, though my hunch is that

passing mathematician refugees were responsible.

¿e earliest extant Arabic work on Indian arithmetic is the Kitab al-fusul �’l-

hisab al-hindi of Abu’l-Hasan Ahmad ibn Ibrahim al-Uqlidisi, composed in Da-

mascus in ca.  ad. ¿e earliest Arabic examples of the use of Indian numerals

are two legal documents written on papyrus in Crocodilopolis, a city (the oldest

city in Egypt), named by the Greek explorers who witnessed its inhabitants wor-

shipping a live crocodile. ¿ose documents mark dates – and – ad
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in Arabic numerals; the next oldest examples are not earlier than the eleventh cen-

tury. By the twel h century, there was a distinct di�erence between the writings of

Hindu-Arabic numerals in the Western and Eastern parts of the Islamic world, as

described by the Moroccan mathematician, ibn al-Yasamin, who died ca. . ¿e

earliest known book using theHindu-Arabic numerals written in vernacular Italian,

Libro di nuovi conti (¿e Book of New Calculations), had been written around ,

but it no longer survives.


With all this documentation and evidence, what can we conclude about the ori-

gins of our numerals? Were they Indian? Arabic? Chinese? French? ¿e origin of

the Hindu-Arabic numerals has been argued by experts for nearly two centuries.

One such expert was the French mathematician and historian Michel Chasles, who

patriotically argued an absurd case for a French origin based on obviously fake

documents.
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Chapter 8

Refuting Origins

Su�ering a need for documents he could not validly collect, Denis Vrain-Lucas re-

sorted to stealing antique paper from several libraries in Paris by cutting the endpa-

pers of old books. Using special self-made inks, he carefully imitated diverse hand-

writings, and sold forgeries (letters and documents) to unsuspecting manuscript

collectors.

He was a law clerk and amateur historian with a genuine passion for collecting

manuscripts of great historical importance. Over a sixteen-year period starting in

about , Vrain-Lucas sold over , autographed forgeries, many to his favored

mark, Michel Chasles, who paid hundreds of thousands of francs over a nine-year

period beginning in . Letters autographed Pascal, Galileo, Descartes, Newton,

Rabelais, and Louis XIVmight have been believably authentic, but Vrain-Lucas had

developed such a respectable prominence in the manuscript collection world that

he was able to pawn o� the ridiculous as well.

¿e naïve Chasles bought Cleopatra’s signed letters (in French!) to Mark An-

thony, a signed letter from Alexander the Great (also in French!), and other letters

between Pascal, Newton, andGalileo all in French proving that Blaise Pascal discov-

ered the law of universal gravitation. Newton’s description of universal gravitation

in the Principia, was published twenty-�ve years a er Pascal’s death, so any such let-

ter signed by Pascal would have been, indeed, astonishing. And yet, in , Chasles

stood before the French Academy of Science to present evidence in consequence

of his treasured letters while some members of the Academy wondered in disbe-
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lief, and others, enwrapped in national pride, assumed it true. In , Vrain-Lucas

stood trial for forgery, and was sentenced to two years in prison, but with no pres-

sure of restitution to Chasles.

Yet, even a er convincing evidence showed that the

manuscripts were fraudulent, Chasles persisted they were genuine.


Onemember of the Academy had unwavering doubts. His full name was Count

Guglielmo Libri Carucci dalla Sommaja. For most of the s, Chasles and Libri

argued �ercely with each other, mostly on the national origins of numbers and the

origins of algebra, at meetings of the French Academy of Science.


Chasles argued that by the � h century, France already had a decimal place-

value system for computations documented in Boethius’sArithmetic, which seemed

to use amultiplication table with Arabic numbers. Later scholarship clearly doubted

that the original text usedArabic numbers. But Chasles argued that Fibonacci’s Liber

abbaci was in�uenced by Arabic authors.

Meanwhile, Chasles’s adversary, Count Libri, had just published a volume of

his Histoire des sciences en Italie, which addressed the question of Indian origins

of arithmetic and positional notation used by Arab authors.

Chasles challenged

Libri’s view that their modern number system came to Europe by the work by the

Italian Fibonacci, arguing that it came to Europe by the Frenchman François Viète

(–).

It was a public feud, fought with strongly sociopolitical antagonisms.

At , Libri was appointed Chief Inspector of French Libraries, which stirred

in him an old joy of handling rare books as well as an uncontrollable urge to steal

raremanuscripts by the cartload. By the age of , a warrant was issued for his arrest.

He �ed to Londonwith over , rare books andmanuscripts, amongwhich were

some of the books he stole as a youngman from the BibliotecaMedicea Laurenziana

in Florence. It may be hard to understand such odd book thieving among promi-

nent people of academic responsibility, but such behavior was not so abnormal in

nineteenth-century France.

For much of the nineteenth century, the Indian origin of positional decimal no-

tation had been challenged.

¿en, in , an English amateur indologist o�cial

working in the Department of Education of the Government of India in Shimla, the

74 Chapter 8



“Mazur” — // — : — page  — #

summer capital of the British Raj, published an article in the Journal of the Asiatic

Society of Bengal. In that article, George Rusby Kaye (–) claimed that the

numerals and the decimal place-value system could not have been Indian in origin.

His argument, in part, comes from a misinterpretation and dating of the Bakhshâlî

Manuscript, a birch-bark document in Sanskrit and Prakrit unearthed by a farmer

in  near the village of Bakhshâlî (now in Pakistan). ¿e manuscript was found

in fragments, just seventy leaves of birch bark from what may have been many hun-

dreds that have deteriorated through careless handling.


A variation of our numerals, as well as a place-value system, is unarguably in the

Bakhshâlî Manuscript. ¿e date of the manuscript, however, had been in dispute.

Some scholars put it at  ad, others at  ad. Kaye claimed  ad was the

likely date, but in his highly in�uential  article wrote, “We can go further and

state with perfect truth that, in the whole range of Hindu mathematics, there is not

the slightest indication of the use of any idea of place-value before the tenth century

ad.”

He implied that the notation in question was Arabic in origin. Either he did

not understand the positional notation, or, possibly, he had the British Raj’s colonial

interest to keep the Indian origin unlikely.

Recent scholarship estimates the date

of the Bakhshâlî Manuscript to be between  bc and  ad, based on the belief

that its language had been extinct since the third century.


Agathe Keller, at the Université Paris VII-CNRS, gives this assessment of Kaye:

We are here in one of these strange but familiar moments that history

of science encounters, usually in stories of science: the denial of facts.

How can we understand G. R. Kaye’s attitude? He certainly had access

to texts that discredit such a claim.


Aryabhatta (ad) knewof the decimal system, and so did Brahmagupta (–

 ad). ¿e Vyasa-Bhasya is a � h-century or sixth-century discussion on yoga

written in Sanskrit by Vyasa. In it, there is an illustration by mathematical analogy:

“the same �gure ‘’ stands for a hundred in the place of a hundred, for ten in the

place of ten, and for a unit in the place of unit.” ¿erefore, the Hindus knew of the

decimal system long before the Arabs.

It was known in China. So how could Kaye

have denied the Indian origins of our number system?
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In subsequent papers, Kaye wrote that the history of Hindu-Arabic number rep-

resentation was complicated by the existence of so many forgeries of the time.

He

suggested that theWest knewmuch of the mathematics formerly attributed to early

Indian mathematicians. Keller believes that by “Western knowledge,” Kaye meant

Greco-Latin wisdom conveyed to the West by Arabic scholars. It seems that Kaye

was tormented by the idea that place-value originated in early Sanskrit texts.

All this would have been �ne had Kaye’s theses not been taken so seriously. His

articles were popular among indologists, and quoted by very respectable mathe-

matics historians, quoted even by the highly distinguished early-twentieth-century

scholars D. E. Smith, L. C. Karpinski, Florian Cajori, and George Sarton. As late as

, the eminent Indian mathematics historian Bibhutibhusan Datta wrote:

¿e signi�cance and importance of a publication like the present one

are apparent to all lovers of the history of science. And their thanks

are certainly due to Mr. Kaye for the great amount of pains that he has

taken in explaining and editing the Bakhshâlî manuscript.


It seems clear that the ten numerals used, including zero for an empty position,

came to us from the Indians by way of the Arabs. So from here on in this book we

shall call them Indian numerals.

Al-Khwārizmı̄ described the Indian numerals as Sanskrit symbols, but his trea-

tise,On the Calculation of the Indians, was not translated into Latin and not brought

to Europe before the thirteenth century, when merchants still did their daily reck-

oning with Roman numerals. ¿is may have been the cause of the confusion in the

origin of our numerals. Indians certainly did visit lands further west of Syria; Brah-

mins visited Alexandria as guests of the Roman court in  ad. Yet, at such an

early time, the numerals were neither viewed as intellectual nor scienti�c jewels,

“but rather like the numerals of alien peoples that become known in the harbours

and ports.”


Whatever the truth, it is quite likely that sometime in the � h century, Indian

numerals had come to Alexandria via a trade route through Syria. FromAlexandria,

which had signi�cant connections to Europe, the numerals moved westward.
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In the beginning, whenever that was, the nine numerals took on a miscellany of

forms; however, by the beginning of the thirteenth century when Fibonacci wrote

his Liber abbaci, those forms, with a few exceptions, were beginning to settle down

to the shapes we see today.

Europeans, who at that time did their laborious numer-

ation and calculations using Roman numerals, were given a gi : the awareness that

just ten symbols were enough to represent any number in the conceptually in�nite

collection of all numbers. ¿e Roman numeral system could not do such a thing,

for it would require a new symbol for each power of ten.


Of course, nomatter what system they used, people with time and tenacity could

always calculate. ¿ey always had! Long before the magni�cent system of nine nu-

merals with its place-values, zero, and easy arithmetic, the abacus had been giving

merchants, astronomers, and mathematicians in the East an easy tool for making

hard calculations. In one form or another, for almost �ve thousand years, it had

been used as a reasonably e�cient calculating tool. It spread westward in the tenth

century.


Arithmetic �rst came from the marketplace and was later elevated to tackle as-

tronomy. Numbers, the language of merchants, must have come from the words

used to depict numbers: one, ten, a hundred . . .¿ese were mere words before they

became symbolized by any kind of notation. An easy way of describing large num-

bers came with the invention of zero; then we could say one-zero, two-zero, one-

zero-zero, and so on. A single number can be used and reused to represent in�nitely

di�erent numbers. With it, we get the idea for potentially writing in�nitely many

numbers by strings of numbers that we already have.

¿oughword of Indian numerals spread widely through themerchant and trade

population, they were snail-slow in becoming the standard. “Not until the sixteenth

century had the new numerals won a complete victory in schools and trade. Even as

late as Nikolaus Copernicus’ famous work,De revolutionibus, published in , the

year of his death, one �nds a strange mixture of Roman and Indian numerals and

even numbers written out fully in words.”
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¿ere have been many scrupulous studies on the origins of our system, but

even a er a hundred years of scholarly wide-reaching research, we are le with only

sketchy guesses of its beginnings and evolution (�gure .).
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FIGURE 8.1. Morphography of Indian numerals. For a more comprehensive account of
the variations and morphographic changes of numerals in the East and West, see

Charles Burnett, “Indian Numerals in the Meditarranean Basin in the Twelfth Century,
with Special Reference to the ‘Eastern Forms,’ ” China to Paris: 2000 Years’

Transmission of Mathematical Ideas, ed. Yvonne Dold-Samplonius, Joseph Dauben,
Menso Folkerts, and Benno Van Dalen (Wiesbaden: Franz Steiner Verlag, 2002),

237–284.

We can speculate on themorphographics of our numerals. As with almost every

culture, the writing of low-value numerals begin as either dots or lines, very likely

the result of what instruments were at hand at the beginning—knife, chisel, twig, or

reed. Writing on wood, stone, or clay would have been slow. When writing in ink

on papyrus, parchment, or paper, however, speed is gained by not having to li the

brush or pen. Every one of our modern numbers from  to  is, as if by design, a

single mark of the pen. ¿e natural morphography that produced our “” seems to

be , , .¿ere is no established evidence for this, but speculation that this is true

seems right. ¿e diagonal line appears to be an unintended dragging of ink from

top bar to bottom so as not to waste time in li ing the pen or brush high enough

o� the parchment. Likewise, “” probably came naturally from the quick scribing of

78 Chapter 8



“Mazur” — // — : — page  — #

three horizontal bars. At times these bars were written vertically, in which case the

numbers would look very much like our own, only rotated by  degrees.

But “”?Where did that come from?At �rst glance there are only three strokes—

the vertical, horizontal, and diagonal. Looking at it as two angles —that is, four

short lines quickly scribed—it winds up as a single unbrokenmark .¿e diag-

onal comes from the unintentional dragging from the vertical mark to the

horizontal.

Oddly, the number of strokes in our modern numeral script has no direct con-

nection with the cardinal number itself. Early morpha of number symbols are no

longer traceable. For example (see �gure .), from the tenth through sixteenth cen-

turies, the number  looked very much like an “h” in di�erent orientations, some-

times upside down, and at other times not. Before the sixteenth century, the number

 had no resemblance to our modern .


History moves by unintended consequences, o en by chance and coincidences

that are hard to foresee and tough to control. Sunlight warms the slime of shal-

low pools of water to slowly create the biochemical conditions to start life on earth.

Earthquakes bury civilizations. Nations change by unintended drivers that can nei-

ther foretell the astuteness from the foibles of their leaders nor the rewards from the

pitfalls of their decisions.WorldWar II may not have happened had the peace treaty

of World War I been more understanding of its consequences. Or, had Hitler died

of a rheumatic fever as a young boy, the whole twentieth century might have turned

out very, very di�erently. ¿e rational process plays a role, but only as strings in the

webbing of chance and consequence. ¿ere is a chance that one person is born and

another lives too short a life, a chance that a natural catastrophe destroys a clue to

the answer of a critical question, a chance that a natural catastrophe creates a clue,

a chance that some document is lost and another found. Trends in the timeline of

human destiny are as close to the dull as they are from the fantastic, and they seem

to be as chaotic as weather over the high seas.

¿ere is some di�culty with notation printed in ancient documents: no matter

how carefully documents are examined, therewill always be a certain degree of spec-
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ulation as to how the notation appeared: Did a scribe introduce something that was

not originally part of the manuscript? Did the printer substitute notation from his

cold type to keep the easiest spacing?¿ewhole story of what authorswere thinking,

or how their work in�uenced others, is the historian’s best shot at the most correct

story. Sometimes the most expert historians do not agree. ¿e development of hu-

man knowledge, like biographies of dead scientists, involves so many intertwined

causal scienti�c, economic, theologic, politic connections that speculation tends to

be the best tying knot. ¿ere are no tweets telling us what went on in the minds of

early contributors to mathematics.

Strange things happen. Good things happen. ¿at’s how history works.

¿e world’s most prominent historians of mathematics don’t always agree with

each other. ¿is is good. It keeps the question open for further study; and isn’t that

the excitement of history? An organism buried in sediment for hundreds of thou-

sands of years is suddenly exposed by an earthquake. A thousand-year-old scrip-

tural palimpsest in a monastery library is discovered to be a long-lost mathematical

treatise. A manuscript that had been preserved by a lava avalanche for hundreds of

years surfaces to tell a true story. History gets corrected by unexpected marvels. It

happens in every century.
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Part 2

Algebra
Going back in time once again, before Indian numerals were brought to Europe.

Significant Initiators
Many of these initiators were either the �rst or best known for putting symbols into

print:

DIOPHANTUS ( � – � ). Alexandrian Greek. Mathematician.

Wrote the Arithmetica in ca.  ad. First to use symbol for minus ( ) and un-

known ( ).

HYPATIA (ca. –). Greek. Mathematician.

First notable woman mathematician, and commentator of the Arithmetica.

ARYABHATTA (–). Indian. Mathematician-astronomer.

Used letters to represent unknowns.

BRAHMAGUPTA (–). Indian. Mathematician-astronomer.

Possibly the �rst writer to use zero (a small black dot) as a number ( ad).

Wrote the Brahmasphutasiddhanta (), which used abbreviations for squares

and square roots and for each of several unknowns occurring in special problems.

Introduced rules for manipulating negative and positive numbers.
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AL-KHWĀRIZMĪ (ca. –ca. ). Persian. Mathematician-astronomer-

geographer.

Scholar in the House of Wisdom. Wrote the Compendious Book on Calculation

by Completion and Balancing (Algebra) ( ad). Organized rhetorical algebraic

expressions according to the various species of forms.

MAESTRO DARDI DI PISA (Jacopo). Italian. Mathematician.

Unpublished manuscript dated ; the Aliabraa arbibra earliest manuscript

written in the Italian vernacular that exclusively treats algebra.

FRA LUCA BARTOLOMEO DE PACIOLI (/–). Italian. Mathematician.

His treatise on algebra was the �rst to be printed; gave it the Arabic name Alghe-

bra e Almucabala (Restitution and Comparison, or Opposition and Comparison,

or Resolution and Equation) ().

NICOLAS CHUQUET (–). French. Mathematician.

Triparty en la Science des Nombres (¿ree-part Book on the Science of Numbers)

(ca. ). Labeled species of powers as ,

,. . . , and square root as .

JOHANNESWIDMANN (–). German. Mathematician.

In his  work, Behende und hubsche Rechenung au� allen Kau�manscha�

(Nimble and Neat Calculation in All Trades), he introduced + as a symbol for

plus.

MICHAEL STIFEL (or Ste�eius) (–). German. Mathematician.

Published an edition of Die Coss in . Used the letters “M” and “D” for multi-

plication and division, respectively. So   D sec  M ter  would indicate
xz
y ,

where sec and ter stand for second and third unknown.

CHRISTOFF RUDOLFF (–). German. Textbook author.

Die Coss (). Incorporated the symbols , , and for square, cube,

and fourth roots, respectively.

GEROLAMOCARDANO(–). Italian. Physician,mathematician, astrologer.

Mathematicianwho in wrote theArsMagna, solving cubic and quartic equa-

tions. Recognized the value of imaginary and complex solutions.
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ROBERT RECORDE (ca. –). Welsh. Physician and mathematician.

Whetstone of Witte () was widely read, so it introduced the equal symbol (=)

to northern European countries.

RAFAEL BOMBELLI (–). Italian. Mathematician.

Involved with solutions of cubic and quartic equations (). Used �, �, �,. . . to
represent the unknown, its square, its cube, and so on.

GUILIELMUS XYLANDER (also Wilhelm Holzmann) (–). German.

Scholar.

A classical scholar. Translator of Euclid’s Elements and Diophantus’s Arithmetica

into Latin.

FRANÇOIS VIÈTE (–). French. Mathematician.

Used letters to represent numbers as general objects, and subjected them to the

same algebraic reasoning and rules as numbers.

SIMON STEVIN (–). Flemish. Mathematician and engineer.

In his L’Arithmetique (), he used the so-called Index Plan for writing expo-

nents—that is, x − x +  would be written as   -  +  .

THOMAS HARRIOT (–). English. Astronomer, mathematician, ethno-

grapher.

Set polynomials equal to zero, and thereby saw that if a were a root to the poly-

nomial equation degree less than �ve, then x − a is a factor of the polynomial.
WILLIAM OUGHTRED (–). English. Mathematician.

Clavis mathematicae (). Invented more than one hundred symbols, but less

than a dozen survive the seventeenth century. Used � to indicate multiplication
and the colon “:” to denote division.

PIERRE HÉRIGONE (–). French. Mathematician and astronomer.

Cursus mathematicus (). Wrote a six-volume algebra text almost entirely in

symbols. Invented Ù (“is perpendicular to”) and∠ (“angle”).

CLAUDEGASPARDBACHET (–). French.Mathematician, linguist, scholar.

First to translate Arithmetica from Greek to Latin ().
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RENÉ DESCARTES (–). French. Mathematician, philosopher.

La Géométrie (). Used numerical superscripts to mark positive integral ex-

ponents of a polynomial. Ranked individual powers numerically. Established the

convention of reserving beginning letters of the alphabet for �xed known quan-

tities and latter letters for variables or unknowns.

JOHNWALLIS (–). English. Mathematician.

Mathesis Universalis and Arithmetica In�nitorum (). Used negative expo-

nents and indicated in�nity by the symbolª.

ISAAC NEWTON (–). English. Physicist-mathematician, alchemist.

Conceived of unknown variables as Fluents (what we call “dependent variables”),

quantities �owing along a curve. Derivatives are denoted as singly dotted forms

ẋ, ẏ, ż, so-called pricked letters.

GOTTFRIED LEIBNIZ (–). German. Mathematician, philosopher.

Understood the limits and conceptional powers of symbols. Made symbols a pri-

ority in his attempts at clear writing. Invented the proper symbols for the di�er-

ential and integral calculus.

LEONARD EULER (–). Swiss. Physicist, mathematician.

Represented
º
− as i in hisRecueil des pieces qui ont remporte les pris de l’academie

royale des sciences ().

WILLIAM JONES (–). Welsh. Philologist, ancient India scholar.

Introduced the Greek letter π.

GUSTAVE-PETER LEJEUNE DIRICHLET (–). German. Mathematician.

Introduced the modern function concept.

WILLIAM ROWAND HAMILTON (–). Irish. Physicist-mathematician.

Introduced the “quaternions,” a new number system in four dimensions that con-

tained the complex numbers.
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Chapter 9

Sans Symbols

Many years ago, I had a few rare moments of being permitted to �ip through the

oldest surviving copy of Euclid’s Elements, MS D’Orville . It was the privilege

of a favored few, a privilege no easier than getting permission to visit the queen in

her drawing room. First I had to obtain a reference from a respected professor of

mathematics. Perhaps it wasn’t fully necessary to have it from a knighted professor,

but his is what I got.¿en, on the day of appointment, aman greetedme in the lobby

outside the Special Collections room of the Bodleian Library at Oxford. ¿e gaunt

man with a Lincoln-looking face, bushy eyebrows, and sunken cheeks escorted me

to a room where he administered an oath.

Do �dem me nullum librum vel instrumentum. . .
I hereby undertake not to remove from the Library, nor to mark,

deface, or injure in any way, any volume, document or other object be-

longing to it or in its custody; not to bring into the Library, or kin-

dle therein, any �re or �ame, and not to smoke in the Library; and I

promise to obey all rules of the Library.

¿ere, I pledged to respect the property of the Bodleian and agreed to not do

things on a long list of things I would not do—neither to use pen nor camera, �re or

�ame. Next, I was presented with a pair of white gloves and asked to sign the Euclid

MS D’Orville  guest book with a special pen. I must have hesitated oddly as I

glanced at the page I had just signed, for I unexpectedly realized that my signature

might be on that page for the next thousand years, just twelve lines below Isaac

Newton’s.
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¿e gaunt man abruptly reclaimed the pen, and, with a face as serious as Abe

Lincoln’s, warned, “Under no circumstances do you touch the folio ungloved!”

I was le alone in the room with this magni�cent document. I cannot tell you

how electri�ed and privileged I felt to be alone in a room with such an ancient

manuscript. I was amonk in amedievalmonastery, a count inmy Bohemian library,

Newton pondering over the question of why there were no symbols in the codex.

Alone in that room I felt a spiritual connection to all the past scholars, scribes,math-

ematicians of the last millennium, and especially to Stephan the Clerk, who in 

ad laboriously copied the work onto parchment for Arethas of Patras. My white-

gloved �ngers delicately turned the pages of MS D’Orville . (See �gure ..)

FIGURE 9.1. Illustration of Big B at Bodleian. Source: Clay Mathematics Institute
Historical Archive, http://www.claymath.org/library/historical/euclid/images/euclid_1_
48.jpg. The Bodleian Libraries, University of Oxford, MS. D’Orville 301, fols. 31v-32r.

Of course, there were no mathematical symbols other than letters to stand for

points and double letters to stand for lines and triple letters to stand for angles. And,

of course, there were whole and rational numbers, symbolized by the Greek sequen-

tial alphabetic system. But I did not expect and could not �nd any symbols for ad-

dition, multiplication, or equality, other than those scribbled in the margins by so

many of those dead readers who must have signed the same oath that I had. Mar-
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gins were �lledwith jottings of Indian numerals, alongwith geometric doodling and

even algebraic equations that I fancied had been le by Newton.

Today,wemaybrowse that same text online, no references, andno gloves needed.

¿anks to the Clay Mathematical Institute and the Bodleian Library and Rarebook-

room.org, the entire original MS D’Orville  may be viewed online by anyone.

Moreover, each book contains a Greek index keyed to the manuscript images along

with English translation.


MS D’Orville  shows how to prove simple identities, such as (a + b) =
a + b + ab; however, you will not �nd any algebraic symbols indicating pow-
ers or plus or minus in Euclid’s work because his work was geometrical and entirely

rhetorical. Even the �rst printed edition of theElements contained no symbols. Book

, as translated by Sir ¿omas Heath, puts proposition  this way:

If a straight line be cut at random, the square on the whole is equal to

the squares on the segments and twice the rectangle contained by the

segments.


It is a geometric statement, yet we might see it as our familiar equation

(a + b) = a + b + ab.

Mathematics was not always what it is today. Its rigor did not always count on

�nite collections of well-formed statements linking back, by rules of logic, to el-

ementary assumptions. Our Western mathematics inherited a fortune in concrete

applications from a thousand years of Babylonian and Egyptian calculations, when

the concept of mathematical proof was far more relaxed and casual. Persuasion was

the aim, not rigor: rigor would slowly develop over the next three hundred years,

before Euclid and the Alexandrian school structured the idea of proof based on el-

ementary assumptions.

One of the earliest extant histories of geometry is Proclus’s A Commentary on

the First Book of Euclid’s Elements. Proclus was a philosopher and historian who

summarized an earlier history by Eudemus of Rhodes. Several historians before the

� h century, from Proclus to Plutarch, tell us that the sixth century bc philosopher
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¿ales ofMiletus introduced a new intellectualmarvel toGreek philosophy: abstract

geometry.


Little is knownof the father of geometry. Even the birth and death dates of Euclid

are far from certain. Hemay have been the compiler and organizer of the great tome

called the Elements, the  bc textbook that encapsulated almost all known math-

ematics of the time, but certainly was not the sole mathematician responsible for its

magni�cent proofs. We say, “Euclid proved that. . . ,” meaning only that such-and-

such a theorem can be found in the thirteen books of the Elements. More than likely,

this fellow Euclid learned many of the theorems from others connected with Plato’s

Academy, folks such as Eudoxus and¿eaetetus. Learning theorems could not have

meant proving them without some axiomatic logical approach. So, though certain

geometric theorems may have been sensed as intuitively true by virtue of clever

credible arguments, undoubtedly they were less persuasive than Euclid’s brilliant

organization scheme of building proofs from axioms or self-evident truths obeying

indisputable logic. ¿e Elements gave mathematics its fundamental nature, its �rst

model of proof.

¿e Pythagorean theorem was known for hundreds of years before Euclid’s El-

ements came into being. ¿e Egyptians knew it; the Chinese knew it; the Indians

knew it; and certainly the Pythagoreans knew it. But its proof beyond doubt was

established at the end of the �rst book of the Elements, a er  other propositions.

Wedo know that this fellowEuclidwas active inAlexandria shortly a erAlexan-

der the Great founded the city in  bc, leaving his general Ptolemy I to reign and

Dinocrates to architecturally plan the city.¿e planwas to lay the city out in a grid of

straight-line avenues and perpendicular streets. By Euclid’s time, the citywas already

in its energetic days of growth. Two great libraries were already housing copies of

books con�scated from ships entering the port.¿eaters were performing tragedies,

and schools of philosophy were burgeoning.

For �ve hundred years a er Euclid’s time, Alexandria continued to be the center

for learning and scholarship in mathematics, science, and medicine. By Diophan-

tus’s lifetime in the second century, the city was still amarvel. Its wide boulevard and
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side streets were paved with stone and dimly lit by torches at night, better lit than

European cities would be for the next two thousand years. It still had those limestone

colonnades that extended from one side of the city wall to the other. It still had its

parks and its monuments to Cleopatra. Perfumes and parchment were still part of

a thriving manufacturing industry, along with glassworks and alabaster carving. It

still had its temples and synagogues. It still had its street vendors, performers, mon-

eylenders, and prostitutes. It was “a mood-altering city of extreme sensuality and

high intellectualism, the Paris of the ancient world.”

No wonder so many mathe-

maticians came to work there.

Diophantus was probably born there, though we don’t really know for sure. We

can say for sure that his masterwork, which was forgotten through the entire period

of the dark ages, had a profound in�uence on the development of algebra when it

was rediscovered in the sixteenth century.

Now these were still years when readingmeant reading aloud. Silent reading did

not yet exist, not even in public. Reading was a concentration e�ort that required

balancing the scroll and rolling it.

By Diophantus’s time, words were already sep-

arated. But earlier manuscripts were written without word, sentence, or paragraph

breaks, and without punctuation. Reading was di�cult and considered a masterful

accomplishment. Reading and writing was donemostly in the morning hours when

there was light, andwhen the heat of the day had not begun. Diophantus would have

worked on parchment using a reed of sea rush.

He did use symbols for powers and unknowns, if we can trust the scribes and

translators that copied and translated his work. For unknowns, he would use a sym-

bol that resembles the Greek sigma ς used at the end of a word, although bigger and

more tilted than the sigmas appearing within the text.

It may have been the cursive

contraction of the �rst two letters of the Greek word for number. It may not appear

that way to us, but the renownedmathematical classicist Sir¿omas Heath believed

that it may have evolved through a sequence of progressively sloppy scribe copying.

Diophantus also concocted a minus sign, something that looks like an arrow facing

upward (sometimes facing downward). But this too was a contraction—quite pos-
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sibly the �rst two letters of the word for minus, one nested in the other.

Or, it might

have simply been that some scribe in a later century had the idea on his own to use

these symbols as abbreviations.

What would mathematics be like if it were entirely rhetorical, without symbols,

or without its abundance of cleverly designed symbols? Here is a passage in al-

Khwārizmı̄’sAlgebra (ca.  ad), where even the numbers in the text are expressed

as words:

Whatmust be the amount of a square, whichwhen twenty-one dirhems

are added to it, becomes equal to the equivalent of ten roots of that

square?


We would write this simply as x +  = x.
¿e solution without symbols reads as follows:

Halve the number of roots; the moiety is �ve. Multiply this by itself;

the product is twenty-�ve. Subtract from this the twenty-one which are

connected with the square; the remainder is four. Extract its root; it

is two. Subtract this from the moiety of the roots, which is �ve; the

remainder is three. ¿is is the root of the square which you required

and the square is nine . . .

Need we go on?

¿e question comes from a slightly more practical question:

I have divided ten into two parts. Next I multiplied one of them by the

other, and twenty-one resulted.¿en you now know that one of the two

sections of ten is a thing.


¿e language of the solution, as al-Khwārizmı̄ wrote it, provides us with a proce-

dure that seems to be speci�c to the question.¿ere may be a routine method, some

algorithm lurking behind the phrasing, but it may take some work to express the

process. On the other hand, the symbolic algebraic process extracts the answers to

many questions of that genre. Inmodern symbolic terms, the solutionworks out this

way: Ten is divided into two parts, where one part could possibly be bigger than the
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other. So the two parts may be represented as x and −x. ¿e product of those two

parts must equal . Hence, x( − x) = . ¿is expands to become the quadratic

equation x − x +  = , whose solution is x =  or x = .

However, keep in mind that the problem was not likely worked out rhetorically.

It would have been �rst worked out on some sort of a dust board, and a erward

composed rhetorically for text presentation.Moreover, the question of how to divide

 in two parts so the product of the two parts is  has a simple answer that could

even be worked out in themind:  has only two factors,  and , which, when added

together gives . It is also a standard Babylonian geometry problem: list the two

parts x and y, and look at the problem as one where x and y are two sides of a

rectangle whose sum is  and whose area is . ¿at geometry problem is re�ected

in the algebra problem that considers two equations to be solved:

¢̈̈
¨̈
¦̈
¨̈̈
¤

x + y = 

xy = 

Solve the �rst for y and plug it into the second to get x − x +  = .
Al-Khwārizmı̄’s proofs are geometric, not algebraic in themodern sense of what

we call algebra. ¿at is not surprising, as there are no algebraic proofs in Arabic

mathematical writing of al-Khwārizmı̄’s time.

But, without any explanation, al-

Khwārizmı̄ does give us a kind of rhetorical algorithmic reduction from the question

to its answer. By rhetorical algebra that is very hard to understand, he tells us how to

proceed. Yet there are no symbols, not one, not even numeral symbols. Jens Høyrup

tells us that “algebraic proofs for the solution of the basic equations are absent from

the entire Arabic tradition. . . .We should expect no direct connection between the

existence of an algebraic symbolism and the creation of the kind of reasoning it

seems with hindsight to make possible.”


We should not be fooled into thinking that the symbolic form of a rhetorical

statement is just convenient shorthand. It is shorthand, all right; but more than that,

it helps themind transcend all the ambiguities andmisinterpretations dragged along
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by written words in natural language. Even more, this symbolism permits the mind

to li particular statements to their general form. By Descartes’s time, equations

werewritten in almost completelymodern symbolic form: the symbol had �nally ar-

rived to—as Tobias Dantzig put it—“liberate algebra from the slavery of the word.”
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Chapter 10

Diophantus’s Arithmetica

When you get to know them, equations are actually rather friendly.1

—Ian Stewart

¿e earliest works of the ancients that could be called algebra date back to the early

Pythagoreans, or at least perhaps the Pythagorean ¿ymaridas of Paros, who, ac-

cording to the Syrian philosopher Iamblichus, gave a rule for solving a certain set of

n simple simultaneous equations in n unknowns. For three unknowns, the rule sim-

pli�es to: Given a sum of three quantities and also the sums of every pair containing

one of those speci�ed quantities, then that speci�ed quantity is equal to the di�erence

between the sums of those pairs and the total sum of the original three quantities.

We, with our modern symbolic language, might say it more simply this way:

If, simultaneously,

¢̈̈
¨̈̈
¦̈̈
¨̈̈
¨̈¤

x + y+ z = a
x + y = b
x + z = c

£̈̈
¨̈̈
§̈̈
¨̈̈
¨̈¥

,

then x = b + c − a. For instance, if simultaneously,
¢̈̈
¨̈̈
¦̈̈
¨̈̈
¨̈¤

x + y+ z = 
x + y = 
x + z = 

£̈̈
¨̈̈
§̈̈
¨̈̈
¨̈¥

,

then x =  +  −  = . ¿is is an easy substitution process, but also, in essence,

what has been known since the nineteenth century as Cramer’s rule. In ¿ymari-

das’s time, it was called “the �ower of ¿ymaridas.” If we continue to �nd the other
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unknowns, we get y = − and z = . Although the solution that uses y = − works,
it would have been considered absurd, because − is a negative quantity. Fractions
and rational numbers would have been �ne; however, before the sixteenth century,

negative numbers—which had been perfectly acceptable as debts—would not have

been accepted as genuine numbers in Europe.


¿e ninth-century version of Euclid’s Elements (MS D’Orville ), books II, V,

and VII, unwittingly deal with algebra through the language of geometry—that is,

magnitudes pictured as line segments to give, for instance, a solution to the quadratic

equation x+ax = b (in ourmodern notation), where a and b are positive numbers.
We, in the twenty-�rst century, mean that there are two numbers that can replace x

and balance the equation; calculating with one of those numbers will make the le 

side the same as the right side. But for anyone living before the � eenth century, the

solution would be found without symbols along with a concrete view of what things

would be acceptable as numbers.

¿e equation x + x =  has two solutions (x =  and x = −); however, only
one is positive, and therefore, only one was acceptable as a number. Such an equa-

tion may be solved geometrically; in fact, it would have been inspired by a practical

geometric problem—say, to �nd the width of a rectangle whose length is three sta-

dion (approximately  yards) more than its width and whose area is equal to four

square stadion. In such a case, for such a geometric problem, the negative num-

ber − that satis�es x + x =  seems to be inapplicable to a rectangle that must

have positive dimensions. Fi eenth-century mathematicians could not have known

that the geometry itself held the answer to why that negative number satis�ed the

equation. ¿e equation itself gave something that the geometry was not picking up,

even though that negative number solution represented something quite real in the

geometry.

Modernmathematics comes from essentially three roots: algebra, geometry, and

analysis, with logic as the earth of all three.¿ose roots are entangled and knotted in

the undergrowth where adhesions make it di�cult to distinguish one root from an-

other: we now have algebraic geometry, a relatively new branch of mathematics that
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combines techniques of abstract algebra with those of geometry; geometric analy-

sis, a discipline that uses geometricalmethods to study partial di�erential equations;

and analytic number theory, a branch of number theory that uses analysis to solve

integral problems. Yet, fundamentally, at mathematics’ very old undergrowth root

level, we �nd algebra, geometry, and analysis.

Symbolic modern mathematics, at its most rudimentary stage, can be traced

back to Diophantus’s Arithmetica. We should be warned that the original text does

not survive, so any notation found in copies might have been introduced by scribes

or translators.

Diophantus wrote a er Hypsicles of Alexandria (because Diophantus quotes

Hypsicles) and before ¿eon of Alexandria, the father of Hypatia (because ¿eon

quotes Diophantus). ¿is would put his time on Earth roughly between  and

 ad. ¿ere is also a letter from an eleventh-century Byzantine monk claiming

that Anatolius, the Bishop of Laodicea (in present-day southwestern Turkey), ded-

icated a treatise to Diophantus sometime near the year  ad. Such a dedication

would suggest that Diophantus must have been active not much later than  ad.


However, in the s, the distinguished historian ofmathematicsWilbur Knorr

suspected that a book that had long been attributed to Heron of Alexandria was

actually written by Diophantus. Knorr examined the style of the book that was al-

legedly written by Heron and found that its style closely resembled Diophantus’s.

He hypothesized that the Bishop of Laodicea’s letter must have referred to a di�er-

ent Diophantus. Heron died in  ad, so that would put the original Arithmetica in

the �rst century rather than in the third.

An epitaphic poem may tell us something about Diophantus’s age:

“Here lies Diophantus,” the wonder behold.

¿rough art algebraic, the stone tells how old:

“God gave him his boyhood one-sixth of his life,

One twel h more as youth while whiskers grew rife;

And then yet one-seventh ere marriage begun;

In �ve years there came a bounding new son.

Alas, the dear child of master and sage
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A er attaining half the measure of his father’s life chill fate took

him.

A er consoling his fate by the science of numbers for four years, he

ended his life.”

It is an algebra puzzle coming from a seventh century collection of puzzles in

the Greek Anthology, Anthologia Palatina, written under the name Metrodorus. A

solution back then would have required a masterful juggling of the material found

in the Arithmetica; yet with our symbolic algebra the solution is quickly found.

Following the poem, we �nd that Diophantus’s youth lasted / of his life. A er

/ more of his life, he grew a beard. A er / more, he married. Five years later, he

had a son, who lived half as long as his father. Diophantus lived four years a er his

son’s death. So, if we let x equal the number of years Diophantus lived and y equal

the number of years his son lived, then we know that

x = � 

+ 


+ 


� x +  + y+ ,

and that

y = x

.

¿ese may be considered to be simultaneous equations in two unknowns, but

they quickly reduce to one simple equation in a single unknown. By substituting the

yof the second equation into the �rst, we �nd that Diophantus died at age . How

easy was that?

¿e Anthologia Palatina contained  epigrammatical puzzles, many of which

were algebraic in nature leading to simple simultaneous equations coming from a

tradition of problems of dividing apples among some number of persons. Such alge-

braic puzzles, written without a single symbol, date back to before the � h century

bc. One, for example, asks for the number of apples that can be divided between

six persons so that the �rst receives one-third; the second receives one-eighth; the

third receives one-fourth; the fourth receives one-� h; the � h receives  apples;

and the sixth receives just .
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We see this as just the question, what is x, if




x + 


x + 


x + 


x +  +  = x?

By the tools of our symbolic algebra, we manipulate the equation: we add the

like terms together, subtract x from both sides, and quickly get the answer x = 
apples.

As a rule, the translations of Greek texts to Syriac to Arabic to Latin had to

go through several stages, each adding a fair share of inaccuracy. ¿e intermediate

translations went through Persian, Syriac, Arabic, Aramaic, and other languages.

¿e Arabs were interested mostly in science, mathematics, mechanics, and philoso-

phy—Apollonius, Philo, Archimedes, Heron, Plato, Aristotle, and¿eophrastus. By

the middle of the ninth century, in Baghdad, in Byzantium, and elsewhere along the

eastern Mediterranean, there was a growing interest in scholarship with increasing

calls for translations. In Baghdad, there was Hunain ibn Ishaq, a seventeen-year-

old polyglot who founded a school for translators. Hunain circulated his suspicion

that Greekmanuscripts were scattered all over the Islamic world, and personally led

expeditions to �nd them in Mesopotamia, Syria, and Alexandria. He was contemp-

tuous of earlier translators, whom he claimed were either completely incompetent

or were working from damaged or illegible manuscripts.

Hunain’s school was special because his technique for translating was di�erent

and right, at least by modern philological standards. His school taught students to

scrupulously compare divergent manuscripts whenever and wherever they could be

found. “¿anks to the scholarship of Hunain and his associates many Greek texts

survive as high quality Arabic translations.”


Before the fourth century, words in bookswerewritten in uncial characters (cap-

ital letters). Although there were some experiments with lowercase script during the

next few centuries, surprisingly little had changed before the founding of Hunain’s

school. Uncial writing had the critical disadvantage of being too slow and too large

to write; the amount of text on a page was limited. To cut down on expensive writing

material, minuscule script (lowercase letters that had been used for letters and o�-
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cial documents) replaced the uncial script. ¿e new script made copying easier and

cheaper. Books could be scribed far more quickly, but with the hindering nuisance

of ambiguous scripts in constant need of interpretative decisions.

A er theArab conquest of Egypt in ad, the demand for parchment increased

considerably, even though there was not much interest in literature at that time.

Papyrus plantations were depleted. Writing materials were no longer cheap and no

longer readily available. But by  ad, coincident with a revival of scholarship—or

very likely assisted by that revival—manuscript writing changed both in appearance

and in production.

¿en, in , during the battle of Talas, in which the Arabs halted the Chinese

western expansion into Kazakhstan, two Chinese prisoners of war were taken at

Samarkand.¿e Kazakhstani Arabs learned the process of papermaking from those

two Chinese soldiers. Paper brought the cost of writing down to a�ordable. So, in

the ninth century, the old uncial texts could be transliterated into the newminuscule

script to preserve the best of Greek literature. All later copies of ancient Greek texts

are derived from one or more uncial script predecessors written on papyri; almost

all are derived from their ninth-century exemplars.

Unfortunately, mistakes happen through transliteration. Letters are confused

and misread. Many errors from the Greek appear to be usually derived from the

same sources of ninth-centurymanuscript copies. A erminuscule copiesweremade

from uncial sources, the originals were discarded, and theminuscule copies became

the sources of all further copies. So, many texts survived in one copy only. As for

Diophantus’sArithmetica, which originally consisted of thirteen books according to

its preface, only six and part of a seventh survive.

A quick glance of the Arithmetica gives hints of algebraic character. ¿is is why

some historians in the past have suggested that algebra began with Diophantus.

More careful glances reveal the brilliance of the work as well as the crudeness of

its notation.¿e book teaches us how to solve speci�c equations of the �rst and sec-

ond degree, yet its notation looks as if it is composed of abbreviations of unknowns

and powers that are carried into the calculations toward solutions.
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Posing and answering di�cult questions about squares, cubes, and other general

properties of numbers to someone by the name ofDionysius (no relation to the god),

the work de�nes letter-based names for squares and cubes, and labels the unknown

quantity ἀριθµός, meaning “the number.” Very soon into the work, Diophantus uses

the symbol , as if the full word ἀριθµός is a bother.

For two hundred years, scholars have been questioning the origins of this sym-

bol .

Some thought it to be ς the alternate to the Greek letter sigma that was

used only at the end of a written word.¿e thought was that Diophantus knew there

would be no confusion between ς and a number; letters of the Greek alphabet had

a numerical equivalent, but that last letter ς (the alternate sigma) was never consid-

ered a number under the Greek numerical system. ¿at was the argument favoring

as just a large tilted ς. ¿ere is another argument, however, that favors the idea

that represents a shorthand contraction of the �rst two letters (the �rst syllable)

ἀρ of the word ἀριθµός, and is in no way an algebraic symbol by our de�nition of

symbol.

All respectable arguments have worthy reasons. At the turn of the twentieth cen-

tury, the eminent mathematics history scholar Sir ¿omas Heath gave a persuasive

rationale for his belief that was neither the �nal sigma nor some sort of hiero-

glyph, but rather a deformation of the two �rst letters of the word ἀριθµός. He rea-

soned that it establishes a “uniformity between the di�erent abbreviations used by

Diophantus. It would show him to have proceeded on one invariable principle in

�xing those abbreviations which we should naturally have expected to be parallel.”


¿e letters µ, δ and κ correspond to the �rst letters of theGreekwords they aremeant

to represent, the monad (our unknown x), the square, and the cube. Heath argued

that these letters also could be confused with their corresponding numerical equiv-

alents—namely, , , and . To avoid such a confusion, Diophantus must have

added the second letter of each of the Greek words, µονάδων, δύναµις, and κύβος.

But then µο, δύ, and κύ could be confused with the numerical equivalents ,,

,, and ,, respectively.

To avoid that confusion, the second letter of each

word was superscripted. ¿e abbreviations became µ
ο
, δ

ύ
, and κ

ύ
. Applied to the
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word ἀριθµός, the abbreviation would be ἀ
ρ
. Occasionally, other symbols appeared,

such as µ
ō
, which stood for an inde�nite number.

How does Heath get from ἀ
ρ
to ? For the moment, let’s ignore the fact that

in Diophantus’s time fractions were normally written with the denominator as a

superscript of the numerator, which means that ἀ
ρ
might be confused with the rep-

resentation for /.

Scribes were not always careful with their cursive. ¿e scribe, working quickly

through long hours—sometimes by the light of a cloudy window, sometimes by

dim candlelight—might turn the cursive form of the pair of Greek letters αρ into

a graphic image similar to orS, for both s-like shapes were used in later trans-

lations. Heath appealed to the eminent nineteenth-century philologist Viktor Emil

Gardthausen, who argued that cursive writing in ancient manuscripts went through

stages.¿e pair of Greek letters ἀ
ρ
morphed to become .¿ismay have been Dio-

phantus’s shorthand for the word ἀριθµος. ¿en, according to Heath, a er much

copying and recopying, successive generations of scribes would no longer see the

marking as two letters, but rather as some obscure minuscule form to be scribed as

seen.

¿e job of a scribe was to copy, not to copyedit, and surely not to enhance or alter

content. Scribes were either monks or professionals for hire, who o en had no idea

what they were actually copying, especially when the books they were copying were

scienti�c ormathematical.With the job came the perk of being le alone formonths,

sometimes years at a time. O en the author had been dead for many years or cen-

turies, so there was no one with authority available to check for mistakes. Le on

their own, those scribes embellished, added, deleted, and made mistakes. ¿e more

celebrated texts, such as the Arithmetica, were already copies, so mistakes tended

to compound seriously enough to infuriate medievalists as they tried to distinguish

author from copyist.

As plausible as Heath’s argument sounds to me, it had been challenged by many

scholars. D’ArcyWentworth¿ompson, the early-twentieth-century Scottishmath-
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ematical biologist, had his own theory of how came about.

¿e symbol was

generally written with appended in�ections as ς
′
, or ς

ου
, or (in the plural case) ςς

oi′
,

which suggest that the symbol is supposed to be part of a word. ¿e nineteenth-

century mathematics historian James Gow wrote a friendly essay soon a er Heath’s

idea surfaced in the early-twentieth-century scholarly world of mathematical his-

tory. Gow believed that is neither a contraction of the �rst two letters nor the

�nal sigma in the word ἀριθµος. He dismissed the �nal sigma opinion by arguing

that ς appears only in cursive Greek, and that cursive Greek did not appear be-

fore the eighth century.

With doubt that comes in some way from corrupted

shorthand, he entertained the thought that it may have come from Indian or Baby-

lonian, or hieratic (Egyptian cursive writing) characters. His friend Samuel Birch,

the Egyptologist, told him that, in form, ς
′
is practically identical to the hieratic

sign of a papyrus-roll, which also signi�ed an unknown force and also a “heap” (the

Egyptian hau). Ahmes used a hieratic sign of a papyrus-roll to mean the unknown.

He was the scribe of the famous Rhind papyrus, a handbook of practical problems

dating from about  bc, “a guide to accurate reckoning of entering into things,

knowledge of existing all things,” now in the BritishMuseum.All hieratic signs di�er

slightly in form, and are derived from di�erent hieroglyphic pictures; however, the

sign for “a sum-total” also seems to be very close to that of the papyrus-roll.

A er

Gow published his argument, Heath rebutted it.

So the whole question remained

outstanding.

Diophantus did not have any symbol for “plus.” However, here lies another mys-

tery: In , the French mathematician, linguist, and scholar Claude Gaspard Ba-

chet translated Diophantus’s Arithmetica into Latin. According to that translation,

Diophantus clearly tells us (book I, de�nition IX): “A wanting [minus] multiplied

by a wanting makes a forthcoming, and that the wanting is denoted by the letter ψ

truncated and upside down so as to form .”

O en the symbol would appear to

indicate minus, a true symbol, one that is abstract with no apparent direct associa-

tion with the written word “minus.”
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Translation: De�nition IX: Multiplying less than by less than produces

more than. Multiplyingmore than by less than produces less than. And

the minus is denoted by the letter ψ cut short and turned upside down.

Here we have the �rst evidence of the symbol forminus. Diophantus tells us that

his symbol forminus is the Greek letterψwith its tail cut and turned upside down.

¿e notation is not always consistent, however; sometimes the symbol is used and

sometimes, in the original Greek, the word λείψει (wanting), even on the same page.

¿e same symbol appears in Heron of Alexandria’sMetrica, written in the �rst

century ad, which would mean the symbol was used before Diophantus was born.

It may have been an abbreviation of the word λείψει, perhaps the �rst and last letters

superimposed, or perhaps some hieratic character.

It seems that is the only Dio-

phantus mark that may be a true symbol with no direct association with the written

word. All other markings in Arithmetica seem to be abbreviations. Since all surviv-

ing copies were made from one dating back to the thirteenth century, it is hard to

know who is responsible for any of the symbols that could have entered along the

way.


To indicate a sum of two terms, Diophantus (or a scribe of Arithmetica) would

simply juxtapose them. For example, the unit µ
ο
α would be joined to the unknown

ς
ου
to represent the polynomial x+ in syncoptic notation as ςουµοα, or more simply

as ςµ
ο
α. Yet he was able to simplify equations by a transposition process of adding,

subtracting, and collecting like quantities, just as we do, all done rhetorically and

without rules of procedure. He assumed that we must know the rules from some-

where else, perhaps from another book or from another teacher. So whenever he

miraculously arrived at a solution, he stopped. Incidentally, we still use the juxtapo-

sition idea when writing fractions; the mixed number 



means  + 


.
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The Copies of Arithmetica
Only six of the thirteen books survive as copies of the original in Greek. Four of the

thirteen in Arabic (books IV through VII) were discovered as recently as .

Al-

most every current commentary on the Arithmetica comes from the Bachet’s Latin

translation of the Parsinius manuscript thatwas scribed by IoannesHydruntius

sometime a er . ¿at manuscript, now in the Paris Bibliotèque Nationale, was

the �rst edition that contained the Greek text.

Tracing the original of Arithme-

tica is di�cult. ¿e earliest manuscript dates no further back than the badly pre-

served thirteenth-century manuscriptMatritensis , now at the Madrid Biblioteca

Nacional.

¿e great libraries of Europe began as small suites of rooms. Some of the earliest

universities were established in small cities of Italy before the middle of the thir-

teenth century—Bologna, Florence, Naples, Padua, Pavia, Perugia, Pisa, Rome, and

Siena.¿ese became the scholarship centers of Italy long before the existence of the

Vatican Library. For many of these cities, a university (universitas) was still just a

society of students bound by the scholastic interests of individual teachers. It had

no physical establishment. Students of family wealth came from all over Europe to

the small towns of Italy to study under the common language, Latin. ¿ey would

pay their teachers directly.

Free, liberated from the working class, they were the

students of the liberal arts.

In , theGermanmathematician and astronomer JohannesMüller, whowent

by his Latin name Regiomontanus, lectured at the University of Padua, a school that

had already been established for over two hundred years. In connection with those

lectures, he gave a talk that purported to introduce all the mathematical sciences.

“No one,” he reported, “has yet translated from the Greek into Latin the �ne thirteen

Books ofDiophantus, inwhich the very �ower of thewhole of arithmetic lies hid, the

ars rei et census which today they call by the Arabic name of Algebra.” It may have

been the �rst time a European writer mentioned a work by Diophantus.

¿en, in a

letter to the Italian mathematician Giovanni Bianchini, he wrote that he had found

in Venice “Diofantus, a Greek arithmetician who has not yet been translated into
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Latin.”

Nobody seems to know for sure how Regiomontanus found that copy of

Arithmetica. Sometime near , Bachet claimed that Cardinal Perron possessed

a manuscript containing the complete thirteen books of Diophantus. According to

Perron, it was loaned to a friend, who died before it could be recovered.


Two centuries before the Ottoman siege of Constantinople in , a �re in that

city’s great library destroyed over a hundred thousand books. Yet a few years later,

the library managed to dedicate its resources to translating Greek and Aramaic to

Arabic and pay hundreds of scribes to transfer disintegrating ancient papyri texts

to parchment. Somehow, copies that were once part of the great Constantinople

Library migrated west as spoils of war, and eventually wound up in private hands,

in the growing university libraries all over Europe as well as in the Vatican.

¿en, in , PopeNicholas V created a public library space in the papal palace.

It began with a suite of frescoed rooms with large windows. Books that the pope

deemedof great consequence or of great illuminated beautywere chained to benches.

¿at library space became its own thing of beauty. By the time of Nicholas V’s death

in , its collection was well over one thousand books. ¿e �rst Vatican librar-

ian, Bartolomeo Platina, who was appointed by Pope Sixtus IV in , handwrote

a catalogue of , entries, the largest collection of books in Europe.

¿e books were mostly theological. By the end of Platina’s six-year tenure, how-

ever, the collection of secular works in Greek and Latin grew to become the most

important scholarship center for classical works in the Western world, with thou-

sands of illuminated manuscripts on art, music, philosophy, theology, history of the

Roman church, science, and mathematics that were bought or looted from king-

doms and empires as far east as China. We now know that at that time the Vatican

Library possessed at least two copies of Diophantus’s writings.

¿e sixteenth-centuryGerman scholarGuilielmusXylander tells us that he came

across a copy of Arithmetica in October , when he was in Wittenberg talking

to a couple of mathematicians who already had possession of a few pages of the

Arithmetica manuscript that belonged to one Andreas Dudicius. Before Xylander

le Wittenberg for Leipzig, he copied one problem and its solution to show to Si-

104 Chapter 10



“Mazur” — // — : — page  — #

mon Simonius Lucensis, a professor at Leipzig, who wrote back to Dudicius for the

manuscript.

¿e next younger manuscript is the � eenth-century (Vat. gr. ) copy ofMa-

tritensis  at the Biblioteca Apostolica Vaticana. ¿ree centuries later, the French

mathematician and historian of mathematics Paul Tannery compiled and organized

a list of twenty-three copies of the Arithmetica from the thirteenth to the sixteenth

century.


Hypatia, who lived in the � h century, had a copy that was later lost.¿ere were

references to an eighth-century or ninth-century copy as well. Close to a thousand

years had passed between the time Diophantus wrote his Arithmetica and the time

Matritensis  was written. Copy a er copy, fromGreek to Arabic, to Aramaic, back

to Greek must have incurred not only errors but also extras. Couldn’t the abbrevia-

tions we attribute to the original have found their way into one of the copies along

the way?

It is very di�cult to follow the notation from one copy to another. Examin-

ing three translations, we �nd wild di�erences: the English of Heath, the Latin of

Xylander and the Latin/Greek side-by-side of Bachet.

Heath transcribed the sym-

bols into a form that is not recognizable in both Xylander and Bachet, and yet al-

most all the popular literature use Heath’s transcriptions. In the Madrid manuscript

(Matritensis ), the unknown appears as

h

, verymuch like a vertical and horizontal

re�ection of the Latin letter “h.” In the � eenth-century Venice manuscript (Mar-

cianus ), that same marking appears as S, and in the Bodleian as .

Heath

argued that all those symbols were simply corruptions of an abbreviation. Such a

hypothesis would be more consistent with how the symbols µ, δ, and κ came to de-

note square (power) and cube from µονάδων, δύναµις, and κύβος, respectively.


Even Bachet’s translation gives several notations for the unknown (our x). In

his second de�nition, it appears as something that looks like the Greek letter ς. At

times, it has an accent ς́; at other times, it appears with a superscript ς
′′
; still at other

times, with a super-superscript ς
ο
′

. ¿ese are all shorthand representations of what

Diophantus calls ὁ ἀριθµός, “the number.” Sometimes we �nd the symbol written
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as ς
οι
; at other times, ς

όν
. ¿ese variations re�ect the grammatical or semantic form

of how the indirect object “number” is used, for they re�ect the word endings of the

various possibilities for ἀριθµός (ἀριθµοί or ἀριθµόν), depending on their gram-

matical structure within the sentence. A double sigma indicates plural; on the same

page, we may see ςς
ούς
, or ςς

ιον
, or ςς

οις
, again depending on the grammar.

¿e letter ς also appears in a work of the Platonic philosopher¿eon of Smyrna,

who lived in the early part of the second century. So¿eon may have been the �rst

to think of abbreviating words in mathematics.

¿e polynomial in Parsinius  translates to Q+−N
in Bachet’s notation (whereQ represents x andN represents x) and to x−x+
in ours.


Note the ςς̃. Here Diophantus is using the plural of the object, because he

has combined nine negatives into one term.Note thatDiophantus’s coe�cients (that

is, θ =  and ιδ= ) are written a er the species demarcations (that is, ςς̃θ). In our
notation, ςς̃θ would mean x, where the x as a double sigma means the plural, 

x’s. In other words, x would be written as either ςα, or simply ς, whereas x would

be written as ςς̃β. (See table ..)

Table .. Listing of Diophantus’s Notation

µ
ο
(units)—for example, µ

οε
means  units

(minus)

ι
σ
(equals)—probably from the �rst two letters of theword ισος, whichmeans “equal”

(unknown) x

δ
γ
(square) x

κ
γ
(cube) x

δ
γ
δ (square-square) x

δκ
γ
(square-cube) x

κκ
γ
(cube-cube) x

Note: In the classical commentaries, these symbols are capitalized. See Diophanti Alexandrini, Opera
Omnia. Also see Heath, A History of Greek Mathematics, .
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All this may indicate that Diophantus was surely representing the unknown, not

as a symbol that would be visibly devoid of the word (yet conceptually connected

to the word), but rather as a mere abbreviation. However, the nineteenth-century

mathematics historian Paul Tannery claimed that the ancient manuscripts before

Byzantine times did not use these di�erent grammatical cases and that it was likely

that later copyists took it upon themselves to include the case endings as abbrevia-

tions. If Diophantus used a di�erent notation for di�erent grammatical case endings

for the unknown ἀριθµός, then why did he not do the same for other symbols?


Adding to the confusion of hypotheses, Heath was suspicious of the argument that

Diophantus actually used a �nal sigma as the abbreviation for the unknown. His

reasoning is that that �nal sigma was a later addition to the Greek alphabet. ¿at

suspicion would have been strengthened by Bachet’s translation of De�nition IX,

which suggests that it has nothing to do with the �nal sigma.

Translated to ourmodern notation, the Diophantine polynomial κ
γ
γ δ

γ
βςαµ

ο
α

becomes x − x + x + :
κ
γ
γ

°
x

®
−

δ
γ
β

°
x

ςα

®
x

µ
ο
α

°


Diophantus used the mark x to write reciprocals. To write


x , he would write

ς
x
.

But division was marked by the words ἐν µορίῳ, which means “in sharing.” So

in our notation, δ
υ
τµ

ο
αψκε ἐν µορίῳ δ

υ
δαµ

ο
πδ δ

υ
µ is written as:

x + 
x − x + .



Of course, from ourmodern standpoint, we see Diophantus’s notation as . . .well

. . .not so di�cult to understand, but rather extremely di�cult to algebraically man-

age. It is a cumbersome notation. Even Diophantus tells us, “You will think it hard

before you get thoroughly acquainted with it.”

Since there was no sign for addition,

it was necessary to group all the negative terms together a er the sign for subtrac-

tion.Moreover, his notation gave no signal to themind that x and x are of the same

number species.
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Wemight say thatDiophantus’s notation is terribly awkward and acutely di�cult

to process compared with what we have today, and be amazed that he could do any

kind of mathematics under the circumstances. We might think that such notation

must have hindered clear algebraic thinking. Perhaps, but routine and familiarity

are the tailwinds of conception. ¿e problem for us is that his notation clothes ev-

erything in the sameway and does not solidly distinguish operational symbols, such

as powers or summation, from numbers or indeterminate objects. Without breaks

between the powers—that is, by pluses and minuses—the mind might have to work

harder to comprehend the algebra.
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Chapter 11

The Great Art

¿e art of algebra may have come from the Greeks or from the Hindus. However,

the Brahmins of northern India had some idea of algebra long before the Arabians

learned it, contributed to it and brought that art to Spain in the late eleventh cen-

tury. ¿e Indian mathematician Brahmagupta wrote the Brahmasphutasiddhanta

in ,metered verses “for the pleasure of goodmathematicians and astronomers.”

Completed in , it not only advanced the mathematical role of zero but also in-

troduced rules for manipulating negative and positive numbers, methods for com-

puting square roots, and systematic methods of solving linear and limited types of

quadratic equations.


¿e tenth-century Meadows of Gold encountered in chapter  reported on an

older book on science and astrology called the Sindhind (¿e Revolving Ages), a cal-

endar book of astronomical tables recording the positions of the sun, themoon, and

known planets, along with astrological data, and a table of trigonometric signs. It

was the encyclopedia of everything the Hindus knew about arithmetic, astronomy,

and all other sciences.

Al-Khwārizmı̄ read through the Brahmasphutmasiddhanta, and soon turned his

energy to writing an Arabic version, the Zı̄j al-Sindhind, an astronomical treatise

based on the methods of the Sindhi and Hindus of India and completed sometime

before . In working with particular mathematical questions, he became fasci-

nated with the methods of �nding missing quantities that were originally rhetorical

and in some cases abbreviated. Five years later, al-Khwārizmı̄ published a book ti-
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tledAl-Kitab al-mukhtasar � hi sab al-gabr wa’l-muqabala, which translates roughly

as “¿e Compendious Book on Calculation by Completion and Balancing.”

Note

the word al-jabr in the Arabic title; al-jabr is sometimes translated as “restoration”

or “completion.” In fact, the term comes from the Arabic verb “to set,” as in “to set

a bone.” Like the fate of many other handwritten manuscripts before the early days

of Gutenberg’s movable type in the mid-� eenth century, the only surviving copies

of al-Khwārizmı̄’s Algebra date back no further than the fourteenth century. Aside

from minor fragments, however, three complete copies do survive.


Fra Luca Bartolomeo de Pacioli (/–), whose treatise on algebra was the

�rst to be printed, gave it the Arabic name Alghebra e Almucabala (Restitution and

Comparison, or Opposition and Comparison, or Resolution and Equation). Pacioli

also called it L’Arte Magiore: ditta dal vulgo la Regola de la Cosa over Alghebra e

Almucabala (¿eGreat Art: Commonly, the Rule of the¿ing in the Art of Restitution

and Comparison).

Other authors claim it fromotherArabicwords. Pierre de laRamée, the sixteenth-

century French mathematician dubiously claimed in his Arithmétique () that

“the name algebra is Syriac, signifying the art and doctrine of an excellent man.” He

went on to say that there was a certain learned unnamed mathematician who wrote

a book for Alexander the Great named Almucabala, a book of dark or mysterious

things, which was later called Aljabra, the doctrine of algebra.

Mysterious, yes. But dark? Almucabala, the title of Robert of Chester’s Latin

translation of al-Khwārizmı̄’s book, does give that onomatopoeic feel of dark and

mysterious things to an English-speaking person. Perhaps both names are appro-

priate for the art.

What may have been mysterious to a student of the art in ninth-

century Persia is familiar to a student of today.¿e Almucabola gives this example:

I divide ten into two parts in such a way that the product of one part

multiplied by the other gives .

It doesn’t ask us to �nd the two parts. Rather it proceeds to give the method for

�nding the answer to what we think is the question. (¿e square brackets are my

interpretations.)
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Now then we let root [x] represent one part, which we multiply by ten
less root [−x], representing the other part.¿e product ten roots less

the square [x− x] equals to . Complete ten roots by the square [
by x] and add this square [x] to . ¿is gives ten roots [x] equal
to the square plus  [x + ]. Take one-half of the roots, that is , and
multiply this by itself, giving . From this subtract , giving . Take

the root of this, , and subtract it from half of the roots, leaving , which

represents one of the parts.

Today’s algebra students learn this as the method of “completing the square” of

the quadratic equation x − x +  = .
¿e purely symbolic manipulation would be as follows:

x − x +  = 
x − x = − (subtracting  from each side)

x − x +  = − +  (adding / the coe�cient of the middle
term, squared, to each side)

(x − ) =  (noticing that the le side is a perfect square)
(x − ) = � (extracting the square roots of each side)
x =  and x =  (adding  to each side)

¿ese days, there is nothing mysterious about al-Khwārizmı̄’s method. Completing

the square goes far back to classical Greek times when such questions were done by

pure geometry and methods that had to be justi�ed by axioms. We see no axioms

in the Almucabola. Perhaps that is what makes it mysterious. ¿e rules follow some

kind of inclination that comes from balancing an equation and extracting roots,

some kind of intrinsic logic that we cannot easily express by ninth-century logic.

What makes al-Khwārizmı̄’s work di�erent from Diophantus’s? ¿e writing in

the Almucabola appears to be almost as rhetorical as that of the Arithmetica, except

for a few minor abbreviation improvements, a notion and symbol for zero, and the

Indian numerals. No new symbols were introduced. Rather, the Almucabola gave a

list of problems organized according to various species of forms. Al-Khwārizmı̄ says

in the beginning, on his �rst page:

I discovered that the numbers of restoration and opposition are com-

posed of these three kinds; namely roots, squares and numbers . . .

The Great Art 111



“Mazur” — // — : — page  — #

Of these three forms, then, two may be equal to each other, as for

example:

Squares equal to roots

Squares equal to numbers, and

Roots equal to numbers.

By root, he means the unknown, what we would call x. By square, he means the

square of the unknown, what wewould label as x. Hence, by our symbolic notation,

his example translates to:

ax = bx,

ax = c,and

bx = n,where a, b, and c are positive.

Al-Khwārizmı̄ had given us methods for solving general linear and quadratic equa-

tions by reducing any one of them to one of three di�erent forms. His methods

simply involved collecting terms of the same species to one side of the equation by

adding the same quantity to both sides. ¿at is how algebra is done: complete and

balance. (Equations in Al-Khwārizmı̄’s time did not have sides—le and right—

separated by some kind of equal sign as ours do, but the idea of completing and

balancing as if there were sides would have made sense.) ¿e symbols of algebra

simply o�er an easier way of carrying out the collection process; the use of symbols

in mathematics does not make it algebra any more than words do. Once this is un-

derstood, the whole enterprise becomes one of seeing an in�nite class of problems

from the point of view of a �nite form.

Such breakaway inspirations led to surprises.

Al-Khwārizmı̄ wrote:

When I considered what people generally want in calculating, I found

that it always is a number. . . . What must be the amount of two squares

which, when summed up and added to ten times the root of one of

them, make up a sum of forty-eight dirhems?

Here, we would write x + x = .
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You must at �rst reduce the two squares to one; and you know that one

square of the two is the moiety of both. ¿en reduce every thing men-

tioned in the statement to its half, and it will be the same as if the ques-

tion had been, a square and �ve roots of the same are equal to twenty-

four dirhems; or what must be the amount of a square which, when

added to �ve times its root, is equal to twenty-four dirhems?

Now halve the number of roots; the moiety is two and a half.

We would write this as



.

Multiply that by itself; the product is six and a quarter. Add this to

twenty-four; the sum is thirty dirhems and a quarter.

We would write this as 



+ .

Take the root of this; it is �ve and a half. Subract from this themoiety of

the number of the roots, that is two and a half; the remainder is three.

¿is is the root of the square and the square itself is nine.


We would write this as 



−  


= .

“Take the root of this,” al-Khwārizmı̄ wrote. ¿e root, singular! For him there

was only one square root of 



—namely, 




. ¿is led him to only one solution, the

positive root x = .We would have done this slightly di�erently. We would use what

high school algebra students call “completing the square,” as we did at the beginning

of this chapter:

Take x + x = .
Divide everything by  to get x + x = .
Add � 


� to both sides to get x + x + � 


� =  + � 


�.

Simplify the preceding to get �x + 


� = 


.

Take the square root of both sides to get x + 


= � 


.

And �nally, subtract



from both sides to get x =  and x = −.

Whoa! What is that − doing here?
An understanding of al-Khwārizmı̄’s solution was limited to the mechanics of

algebra, because the mathematical strings connecting algebra and geometry were

not yet understood.
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Imagine al-Khwārizmı̄’s solution drawn through the geometry of the quadratic

equation. If he knew and used that geometry, he would have seen x + x =  as

a graph cutting through height  at two values of x—namely,  and − (see �gure
.).
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FIGURE 11.1 Graph of x + x = .

Or, had he the symbolic algebraic tools to factor x + x = , he would have

noticed that his equationwas the same as (x−)(x+) = , which has two solutions,
x =  and x = −.

Al-Khwārizmı̄ knew about negative numbers from theBrahmasphutmasiddhanta,

and even knew that there are two roots to any equation of the form ax + b = cx.
Brahmagupta de�ned zero as a number, the number one gets from subtracting a

number from itself. In that way, he could list his arithmetical rules:

A debt minus zero equals a debt.

A fortune minus zero equals a fortune.

Zero minus zero equals a zero.

Zero minus a debt equals a fortune.

Zero minus a fortune equals a debt.

Zero times a debt or fortune equals zero.

Zero times zero equals zero.

By his language, we must conclude that he was thinking of negative numbers as

numbers. His arithmetically logical rules talk of “fortunes” and “debts,” and hence

about positive numbers and a hint at the idea of negative numbers. He knew that in

some cases a quadratic equation would have two roots, and that the condition of the

application leading to the equation would exclude one. Even as late as Fibonacci’s

time, the negative root was suspect.
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Until recently, it was assumed that Brahmagupta was the �rst mathematician to

use negative numbers in any modern sense. But in China, negative numbers had

been used since the beginning of the �rst millennium. ¿ey appear in ¿e Nine

Chapters on ¿e Mathematical Art (see chapter ). So the Chinese had them four

hundred years before the Indians.
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Chapter 12

Symbol Infancy

Algebra was not always called algebra. In the mid-� eenth century some Italian

and Latin writers called it Regula rei e census (Ruling Out of the¿ing and Product).

Mathematicians prefer short names for their �elds—arithmetic, geometry, calculus,

analysis, number theory, logic, and so on.

François Viète �rst called it the “analytical art.” John Wallis gave it the English

name “specious arithmetic.” Most likely, his word for it came from the Greek word

εἶδος, whichmeant “species,” as well as the particular, special power of the unknown.

¿e word “specious” was used to suggest that the species—monads, squares, cubes,

and so on—generally represented all known and unknown quantities. In � eenth-

century English, the word “specious” meant pleasing to the eye in form, yet de-

ceptive. ¿e word was still in use with that meaning in the eighteenth century and

could be found in Samuel Johnson’s Dictionary of the English Language printed in

.

Newton called algebra “universal arithmetic,” presumably because it embod-

ied all the universal laws of arithmetic to be used on general equations. PetrusRamus

thought the Arabic name “algebra” was a vulgar name for “an art of [such] admirable

subtlety.” For Descartes, the Arabic name was “barbarous.”


At its surface, algebra seems to be the art of manipulating symbols according

to some rules for doing so. But then, what should we make of a question that asks

for the number that when added to its � h gives twenty-one? Its verbal solution

gives the answer as seventeen and one half. ¿at particular question was asked in

the Ahmes papyrus.¿e solution, as it was written on that papyrus sometime before
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 bc, would not be recognizable to the student of algebra today, who would sim-

ply write x + 


x =  and e�ortlessly manipulate the symbols by our modern rules

of the art to solve for x, and get x =  

. ¿at student would probably be unaware of

thoughts enabling generalization and uni�cation and deeper levels of understand-

ing, all coming directly from the notation itself.

¿e twentieth-century mathematician and science �ction author Eric Temple

Bell once remarked—with little evidence—that in the mid-seventeenth century,

mathematicians were able to introduce negative and rational exponents because

symbolic manipulation liberated their thinking from the wilderness of words. In

his classic popular history book, he wrote, “¿e more honor, then to the ancients

who persevered through jungles of words to attain what the moderns reach with a

few almost mechanical strokes of the pen.”


Evidence of this comes when we notice that for many centuries those mathe-

maticians who worked their algebra rhetorically were not seeing what we now see.

With the new symbolic representation of powers of the unknown x,x,x,�, came
hints of how the products of the powers of x were governed by the addition of the

exponents. Bell wrote in his book¿e Development of Mathematics, “an incredible

mass of confusing terminology and ine�cient rules was swept into the past, and

with it, equal or greater mass of torturous thinking.”


Students today are quite surprised to learn that before our relatively modern

notion of a negative number, and before having a symbolic way of representing a

negative number, the equation ax+bx+cwas regarded as completely di�erent from
the equation ax = bx+c. And each of these was still di�erent from ax+bx+c = .
¿is may seem odd because, to us, the solution of one must be the solution to the

others; however, before the sixteenth century, the arbitrary rational constant terms

a, b, and c had to be positive.

For the most part, by our de�nition of symbol, Babylonian mathematics had no

symbols other than their smart numerals and pictograms. Even Diophantus, as we

have seen, did not make use of the full power of symbolic manipulation. Yet the art

of algebra was practiced, for it was not—and never has been—limited to the mere
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manipulation of symbols. Algebra—by a rhetorical jungle of words or by symbols

themselves—is the art of understanding relationships, of which “equality” is just one

kind.

Every generation produces astounding people who �ll awaiting niches that ei-

ther forward human existence or make the world a better place for everyone—Jo-

hannes Gutenberg, Galileo Galilei, Leonardo da Vinci, Martin Luther King Jr., and

Nelson Mandela, to name a few. I have no doubt that great mathematicians such as

Newton and Leibniz would have been able to do fantastic mathematics in a world

without a single symbol. Also, I have no doubt that in such a world their work

would have presented serious struggles, and possibly almost insurmountable ob-

stacles—almost, because almost nothing is insurmountable for humans. So what

brought on the �ood of symbols and algebra notation in the second half of the six-

teenth century, a gush powerful enough to completely change the way mathematics

and science has been done since the seventeenth century?

Imagine where wewould be today if algebra were still entirely rhetorical, or even

just abbreviated. Students of algebra fear those “word problems” that �ll chapters of

their elementary algebra texts. ¿ey are easier than those problems that students in

the � eenth century had to solve, for the modern student knows that all that has

to be done is to translate the problem into symbolic notation, and let the rules of

symbolic manipulation take it from there.

Abacus algebra began in Fibonacci’s time and�ourished from themid-fourteenth

century. It was a tradition of problem solving that came from the abacus schools and

the maestri d’abbaco treatises that dealt with large numbers of arithmetic and alge-

braic problems backed by rules or geometric demonstrations. ¿at tradition was

partly responsible for the emergence of symbolic algebra that began in the �rst half

of the sixteenth century.

¿e ideas of algebra brought on the symbols, not the other way around. Robert

Recorde had written the words “is equal to” almost two hundred times in his book

Whetstone of Witte () before noticing that he could easily “avoid the tedious

repetition” of those three words by designing the symbol ======= to represent them.
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¿e initial incentive was the need to abbreviate, but once the equal symbol was in

place, something else took over. ¿e concise character of the symbol came with an

unintended bene�t: it enabled an unadorned picture in the brain that could facilitate

comprehension.

Early historians had credited the Arab algebraist al-Qalasādi as being the �rst

Arab to use letters of the Arabic alphabet to denote arithmetic operations. He was

born in Bastah, a Moorish city in what is now northeast Spain, where he studied

law and the Koran. Later, when the Castilians began their conquering push east-

ward, he moved south to Granada in Andalusia. In the early part of the � eenth

century, almost the whole of Spain and Portugal was Muslim and at constant war

with the Castilian and Aragonian Christians. Al-Qalasādi wrote several books on

arithmetic and one on algebra that had mathematical notation made from short-

ened Arabic words and letters. Such notation was indeed used in his treatise on

algebra, Al-Tabsira �’lm al-hisab (Clari�cation of the Science of Arithmetic).

His notation was clearly an attempt at symbolizing algebra through abbrevi-

ations, a �rst approximation to what we would consider true symbols; however,

we should also be aware that they were already used by North African Muslim

mathematicians for at least a century: he was not the originator. A century before

al-Qalasādi, however, the Maghrebian mathematicians Ibn al-Banna and Ibn al-

Yasamin also had schemes for a kind of abbreviated alphabet notation, and surely

such alphabetical symbols had been used in the East far earlier than the thirteenth

century.


Small things happen now and again to move the progress of human intelligence

and to bene�t the world. ¿ink of the language tools that have emerged alongside

the modern programmable computer revolution that has been with us since the

s, and how quickly they changed to give us the modern laptop and café. Could

we have all those laptop apps relying solely on low-level machine or assembly lan-

guages without a general-purpose computer programming language? Sure! But pity

the people who have to do the work, and imagine how long it would take. Tedium

and complexity would call for more gi ed people than we have schooled.
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And so it was with the symbol childhood of the sixteenth century. Could we

have all the modern mathematics and physics we now have without the symbolic

language that was developed in the late sixteenth century? Sure! But what would it

have taken to have that same achievement? At least a huge dedicatedmath populace.

Italy wasted no time in cultivating the seeds of algebra that dri ed to Europe

a er the Arabs brought that art to Spain. Unfortunately, except for the works of

Fibonacci, almost nothing is known about European works of algebra before .

¿e earliest works of that period were those of Fibonacci, Paolo de l’Abacco, and

Belmondo de Padua. By the end of the � eenth century, algebra went no further

than quadratic equations with just one unknown, a level close to the syllabus of

any present-day high school course. Back then, the art was still being performed

rhetorically; there were still no signs or symbols for the unknown or operations,

and quadratics had only the positive roots.

In , Scipione de Floriano de Geri del Ferro (ca. –), more commonly

known as Scipio del Ferro, solved a speci�c case of a compound cubic equation, the

case x+ax = b, where a and b are positive numbers. At that time, negative numbers
were still under suspicion and therefore not used.¿e same for zero, which was still

regarded suspiciously, though four centuries had passed since its introduction to

Europe. So the equations x + ax = b and x = ax + b were considered di�erent.
In our symbolic algebra, which uses negative numbers and zero, those two cases are

not too far from the general case x + ax + bx + c = .

Del Ferro’s solution—like much of the mathematics of the time—was not done

with literal coe�cients, but rather with strategic choices of convenient numbers.

Working out the formula for the particular cubic polynomial x = x +  and

�nding the solutions to be x =  and x = − � i
º
 gave con�dence in �nding

a general method. ¿e mind develops its own ways for dealing with abstractions

through repeated examples, yet, mysteriously, it is also capable of generalizing from

a single example. Without symbols, it would certainly not be easy. Along the way, it

would be clear that the coe�cients  and  might be convenient for computational
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purposes, although not con�ning enough to hamper any general procedures. ¿at

was how algebra was done in del Ferro’s time.

¿at wonderful substitution, y = x − a

, the one that reduces the general cubic

equation to one without a quadratic term, was a general procedure known to del

Ferro, though it was performed geometrically and only on speci�c example cubic

polynomials, so a would have been the coe�cient of a particular quadratic term, a

speci�c number. Ideas for substitutions are now so elemental to the modern algebra

choreography of reducing one problem to a simpler one that we must marvel at

its formidable brilliance and wonder how such a work of genius could possibly be

done without the use of symbols. Not an idea that easily lends itself to rhetorical

expression, it surely is one of the grand bene�ts of the symbolic approach. And so

del Ferro was able to construct the general solution to the cubic equation x = ax+b
as:

x =


¿
ÁÁÀb


+
¾

b


− a


+



¿
ÁÁÀb


−
¾

b


− a


.

If this looks a bit menacing, just imagine how fearfully tormenting it must have

been in del Ferro’s time, or even a hundred years a er, without the symbols of our

modern notation. Applied to x = x + , where a =  and b = , the entire

right side collapses to give x = . Del Ferro did not know that there must be three

solutions, but let’s leave that for later, when we take this up again in chapter .

By , the Italians—in particular, Gerolamo Cardano, his student Lodovico

Ferrari, and his rival Niccolò Fontana Tartaglia—had solved general cases of cubic

and quartic equations. Cardano’s Ars Magna, short for the more formal title Artis

Magnae, Sive de Regulis Algebraicis Liber Unus (¿e Great Art, or the Rules of Al-

gebra, Book Number One), was published in that year. It contained everything that

was known about cubic and quartic equations up to that time, including (for the

�rst time in print) both real and complex numbers as roots (called “true” and “�cti-

tious”) to those cubics. It gave the rules geometrically, and acknowledged that Nic-

colò Tartaglia communicated the rules—not the proof—for solving cubics to Car-

dano, but that Tartaglia learned the rules from del Ferro. All algebra of that time was
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still mostly rhetorical algebra with a few symbols creeping in, such as for root.

Presumably was a shorthand for the Latin word for “root,” radix; square roots of

negative numbers would have been written as .m̃., so .m̃. would have meant

º
−. Del Ferro communicated his ideas to a small circle of friends, students and

colleagues, but never published. ¿erefore, we have no direct evidence of his work,

just that which comes from Cardano, himself, who traveled fromMilan to Bologna

to meet del Ferro.

¿ough the story behind the main achievement of his great work is recognized

as one of the most ferocious feuds in the history of mathematics, Cardano did give

credit to others, including his old friendNiccolò Tartaglia.

Referring to the solution

of x = ax + b, Cardano gave those acknowledgments in the �rst chapter of his Ars
Magna:

In our own days Scipione del Ferro of Bologna has solved the case of the

cube and �rst power equal to a constant, a very elegant and admirable

accomplishment. Since this art surpasses all human subtlety and the

perspicuity of mortal talent and is a truly celestial gi and a very clear

test of the capacity of men’s minds, whoever applies himself to it will

believe that there is nothing that he cannot understand. In emulation of

him, my friend Niccolò Tartaglia of Brescia wanting not to be undone,

solved the same case when he got into a contest with his [Scipione’s]

pupil, Antonio Maria Fior, and, moved by my many entreaties, gave it

to me.


¿e feud was not over acknowledgment; rather, it was over his pledge of secrecy

to Tartaglia, and a promise to not publish it.

Cardano gave his version of the solu-

tion, a purely geometric one, because he did not have the symbolic tools necessary

to do the hard work. For example, we can show that (a+b) = a+ab+ab+b

by multiplying three copies of (a+ b), using a few rules of algebra. Cardano had no

such advantage. He had to diagrammatically slice a geometric cube to get the same

result.

His rhetorical representation of equations had one great drawback. It required

long lists of equation types, in part because he would not use zero. He was suspi-

cious of the rules of signs for the multiplication, arguing twenty-�ve years a er the
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publication of Ars Magna that minus times minus makes plus has the same truth as

telling that plus times plus makes minus.

In re�ection he writes, “And therefore

lies open the error commonly asserted that minus times minus produces plus, lest

indeed it be more correct that minus times minus produces plus than plus times

plus would produce minus.”

So it is hard to understand how he could have such

suspicion and still have argued for negative solutions to linear problems and accept

square roots of negative numbers.

¿e Ars Magna was a real breakthrough for algebra. ¿ough it didn’t have the

symbols that were soon to be invented, and therefore was excessively strenuous to

write and cumbersome to read, it gave mathematicians the chance to see a real need

for a better source of symbols to make comprehension easier and stronger. Geome-

try in those days tended to be a subject of visual logic; one had to see a drawing, at

least in themind’s eye, in order to approve of the inherent logic. It had been that way

ever since the time of the Pythagoreans, Euclid, Apollonius, and Archimedes, when

many problems were solved by geometric means—lines, squares, and cubes imag-

ined in space—with geometric proofs, partly because there were few other means

available. 	  

A B 

D 

E 

F 

G 

C 

FIGURE 12.1 Viewing x − ax + a � (x − a) geometrically.

To give an example, here is a purely geometric reasoning that would show the

algebraic identity x − ax+ a � (x− a). First consider the diagram of the square

ABCD(�gure .). Let x represent the length of sideADand a the length of segment

ED.¿en x is the area of the square with side AB, ax the area of the rectangle with

sides ED and DC, and a the area of the small square with sides GF and FC. By

subtracting the area represented by ax twice from the larger area represented by x,
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we would almost have the area of the square with side AE. Almost, because it would

be de�cient by the area of the small square of side GF (which we subtracted twice,

when we should have subtracted only once). So we need to add back the area of the

small square with side GF. Algebraically, what we did was to subtract ax from x

and add back a to get (x − a). Hence, x − ax + a � (x − a).
Cardano did not have our distinct advantage of working with literal numbers

as the coe�cients. His treatment would have meant a speci�c assignment for the

size of a in proving the preceding identity. So he would deal with an equation of the

form ax = bx+ c by choosing a, b, and c to be positive numbers appropriate to his
example—say, , , and . In his �rst example (Ars Magna, chapter V), he tells us

that x =  is the solution (ignoring the negative solution x = −) to x = x + .
If Cardano had the symbolism necessary to perform the algebra directly, he

might have done what we would do. Balancing equations by rules, he would have

taken (x − a) to be (x − a)(x − a) and used the distributive law from the right

to get (x − a)x − (x − a)a. ¿en he would have used the commutative law to get

x(x − a) − a(x − a), and once again use the distributive law to get x + (−ax) +
(−ax) + (−a)(−a). But here he would have been stuck, for he would have to agree
that (−a) times (−a) equals +a. He would instead argue that the +a that comes in
the end is not a result of the fact that (−a) times (−a) equals +a, but rather because
it is an area that had to be replaced a er it was subtracted twice when it should have

been subtracted only once. Hemight even quote Euclid’s Elements, book II, proposi-

tion , for the security in knowing that one can perform the geometry of subtracting

and adding squares and rectangles the way he did to get the desired result. Even if

he had the proper symbols at hand, he would have had to have the algebraic rules to

justify any manipulation he wanted to perform; such rules were not fully in place,

yet.

When it came to a detailed proof of solutions to polynomials higher than cubic,

geometry was no longer much help. “It would be foolish to go beyond this point,” he

wrote, “Nature does not permit it.”

So the Ars Magna was a struggle to write and a
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struggle to comprehend, especially when it came to solving higher degree equations.

Cardano himself told us that it was very di�cult.


¿e most remarkable part of Cardano’s treatise is that, though rhetorical and

cumbersome, it clearly recognized the value of imaginary and complex solutions,

which had been completely avoided by earlier writers. Even though he would not

multiply two negative numbers to get a positive number, he would have no qualms

about multiplying and dividing two square roots.

Algebra was dragged along by the early language and notation that hindered a

certain way of thinking symbolically. It is, therefore, hard to determine the precise

moment when our way of algebraic thinking actually began. Imagine trying to think

with unknown quantities as well as operations on quantities all expressed by their

full-length names. Humans hate tiresome repetition; when the repetition goes too

far they search for simpli�cation.

I recall one summer when I was just � een and worked (illegally) for a week at

my uncle’s silkscreen workshop. Like Charlie Chaplin inModern Times, all day long,

from : to :, I stood in one place like a simple-circuited robot, moving ink-wet

posters from a silk screen to a drying rack, one a er another: extend both hands,

grab corners, li , turn, slide into rack, release corners, turn back, repeat. ¿e grand

highlights of the boring hours happened when a rack was full and another had to

be rolled into place, a break in the robot’s program that gave a chance to walk a step

or two. I counted the minutes along with the wet posters being moved, one-by-one.

To make it even more painful, a great big Seth ¿omas clock that might have been

originally designed for a train terminal was mounted high on the wall directly in

front of the drying rack, the slowest moving clock in the world.

Every night, I would invent and sketch a newmechanical contraption thatmight

someday lighten daytime monotony for human conveyor belts. If only I had pru-

dently patented my ideas . . .

Humans have always made tools or invented machines to do repetitive work;

they conceive abstract solutions for recurring questions; they concoct shorthand for
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tiresome verbosity. And so, a er writing thousands of repeated arithmetical words,

mathematicians caught on to the idea of substituting initials of words for the words

themselves.

In the words of Ernst Mach:

Strange as it may sound, the power of mathematics rests upon its eva-

sion of all unnecessary thought and on its wonderful saving of men-

tal operation. Even those arrangement-signs which we call numbers

are a system of marvelous simplicity and economy. When we employ

the multiplication-table in multiplying numbers of several places, and

so use the results of old operations of counting instead of performing

the whole of each operation anew; when we consult our table of loga-

rithms, replacing and saving thus new calculations by old ones already

performed; when we employ determinants instead of always beginning

afresh the solution of a system of equations; when we resolve new inte-

gral expressions into familiar old integrals; we see in this simply a feeble

re�exion of the intellectual activity of a Lagrange or aCauchy,who,with

the keen discernment of a great military commander, substituted new

operations for whole hosts of old ones. No one will dispute me when

I say that the most elementary as well as the highest mathematics are

economically-ordered experiences of counting, put in forms ready for

use.
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Chapter 13

The Timid Symbol

InNuremberg, Germany, a year before Cardano’sArsMagna appeared in print, peo-

ple were studying Michael Stifel’s Arithmetica Integra, a treatise on arithmetic and

algebra. Stifel included several symbols that were already in use, such as +, −, and
º
, which he actually called “plus,” “minus,” and “radix”; still, there was no sign for

“equals.”

Symbols were beginning to appear in European manuscripts on algebra in two

di�erent styles: one from the Italians, the other from the Germans.¿e Italians used

the word cosa (“what,” or “thing”) when referring to the unknown root of an equa-

tion. And since algebra was a er all the art of �nding such cosa, the northern Euro-

peans began calling algebra the Cossic Art.

¿e oldest notation for radicals (square roots, cube roots, and so on) dates back

to about , when a dot placed before the radicand (the quantity to be square-

rooted or cube-rooted) was used to signify a square root: two dots for the fourth

root, and three dots for the cube root. By , the dot evolved into a blackened

point with a tail bent upward to the right. It looked very much like a musical note,

something like . But this new symbol wisely didn’t carry along the old idea of re-

peating itself to get cube and fourth roots. Instead, it had another symbol attached

that indicated the rank of the root. So,  z would indicate square root of two, and

ce would indicate the cube root of two. To indicate the fourth root, an extra dot

was used. Accordingly,  z would indicate the fourth root of two.
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Algebra at that time was concerned with solving cubic and higher degree poly-

nomials. Solutions o en involved binomials that, in our notation, would appear as
»
x +

º
b. To indicate that the root is to apply to the entire binomial, an elongated

L was used along with cs, an abbreviation for the Latin communis (“common”). ¿e

base of the Lwould extend under the binomial. For instance, cs|+  z would indi-

cate

»
 +

º
, the plus sign being already occasionally used inGermanmanuscripts.

Michael Stifel’s edition of Christo� Rudol� ’s Die Coss () incorporated the

symbol (a close match to our

º
) for square root, along with for cube root

and, peculiarly, for fourth root.

So,  =  and  = . Peculiar, be-

cause these symbols must have contributed to misunderstandings suggesting that

 equals  and that  equals . ¿e second is true. ¿e �rst is not.

Clearly, Rudol� did not mean to connect any signi�cance to the similarity between

and , and yet historians have mistaken his intent by writing his sym-

bols for cube and fourth root as

ººº
and

ºº
.¿is confusion shows how di�cult

it is to design good symbols.


Rudol� ’s symbol for square root had another disadvantage. How could his read-

ers distinguish between

»º
 +  and 

º
 +

º
? ¿ey had to watch out for

dots. To indicate that he meant

»º
 + , he would write .  + , the dot

indicating a grouping that extends over the next term.


Perhaps Die Coss was the �rst complete algebra text written in the German lan-

guage, a referencework for all that was known about algebra up to the early sixteenth

century, and a fabulous resource for future textbook writers. At the time of its print-

ing, most symbols were still mere abbreviations of words without any standardized

agreement. Although+ and−were used on occasion, sowere pandm. And could

be marked as R, or , or res(x), which was Latin for “thing,” meaning the unknown

thing that was to be found.

For many years a er the publication of Die Coss, histo-

rians took the symbol as a rapid writing of the letter “r.” Euler thought so.

As we

have seen, however, the symbol may have evolved from the German manuscripts

where the dot evolved to become the symbol , a kind of dot with a tail, perhaps

the trail a stylus would make a er marking the dot quickly. ¿e original symbol
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found in Michael Stifel’s edition of Rudol� ’s Die Coss has no horizontal bar that

gives the symbol an “r”-like image.

¿ere is an unpublished manuscript dated , the Aliabraa arbibra, attributed

to someone calledMaestroDardi di Pisa. Almost nothing is known about the author

beyond the fact that Dardi was an abacist who played an important role in medieval

mathematics by introducing abbreviated notation. Even his name is obliterated from

the manuscript, which is believed to be the earliest manuscript written in the Italian

vernacular that exclusively treats algebra.

¿e Aliabraa arbibra uses abbreviations

such as for radix, �m (the �rst letter of meno, the Italian word for “less”), c for

the unknown (the �rst letter of cosa), and ce ce for fourth power instead of censo

di censo (square of the square). Operations are not symbolized; however, there are

some curious diagrams that must have been used to teach multiplication.

Dardi’s

calculations forced him to consider what to do about nested square roots such as
»
x +

º
, which he would have written as “ de zonto censo co de .”

A er a bit of tinkering by Stifel in , a modi�ed version of Rudol� ’s symbol

for square root was the one that stuck. So by , the German symbol
º
found its

way through Europe, west to France and England, and south to Spain and Italy.

Many authors going back to Pacioli used the notation , which soon took on

the more cursive design , which usually meant the root of the polynomial. Nicolas

Chuquet used it (superscripted with a ) in his algebra text Triparty en la Science des

Nombres (A ¿ree-part Book on the Science of Numbers), but not as the root of the

polynomial; hewanted it to symbolize the square root.

Wedon’t know exactly when

the Triparty was written. ¿e year of the writing would have been around , but

the manuscript was found in the s, and since almost four hundred years went

by before it was printed, it could not have had much in�uence on the historical

development of notation, except for the fact that Chuquet’s student Estienne de la

Roche covertly copied the work and published it as his own, getting the credit of

having the �rst French algebra book.

For Chuquet, a number was a �rst root. If he were to write

, he would mean

the number . If he were to write

, he would mean . In , Chuquet wrote:
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¿e root of a number is a number which,multiplied by itself one or sev-

eral times according to the demands and nature of the root, produces

precisely the number of which it is the root. Or otherwise the root of a

number is such that, written and set down two ormore times one under

the other or one beside the other, and then the �rst multiplied by the

second, and what comes by the third if there is a third, and again the

fourth, and again by the other if there are others, the last product shall

be equal to the number, or shall produce the number whose root it is.

And one should know that there are in�nitely many kinds of roots, for

some are second roots, others third roots, others fourth roots, others

� h, and thus continuing without end.


Chuquet’s notation is confusing when reading other works of the period be-

cause unfortunately its ancestor had a double meaning. Sometimes, was used

tomeanwhat wewould label as x, and at other times, it wouldmeanwhat wewould

call x. ¿e confusion comes from the Latin words latus (“side”) and radix (“root”)

used by writers working from Greek sources where all algebra was veiled in geom-

etry. If we consider a geometric square, does signify its side x or the root of its

side,
º
x? Tomakematters worse, the notation would sometimes refer to the root of

the polynomial, which for us would be the possible values of the unknown.¿e only

way to tell was by context, so readers had to be attentive.¿e problem stemmed from

Pacioli, who used for both roots and powers. In his Summa (), he wrote

.pa = x,
.
a = x, .

a = x, .
a = x

and

. =
º
, . =

º
, . =

º
.

Such awkward notation leads to problems. In the second line preceding, the

numbers are always one unit higher than the powers they represent. We want xn

to mean multiply x by itself n times. ¿at is what it should mean so that we get

our wonderful little multiplication formula for exponents, xm ċ xn = xm+n. Pacioli’s
notation has that unnecessary minus one as exponent:

.ma ċ .na = xm− ċ xn− = x(m−)+(n−) = xm+n− = .(m + n − )a.

130 Chapter 13



“Mazur” — // — : — page  — #

We can ignore the inelegance. ¿e formula works, and .na surely does repre-

sent a power of x, just not n copies. But inelegance is not the only concern. ¿ere

does not seem to be a symbolic way of raising a power to a power—that is, there does

not seem to be a way to write (xm)n without resorting back to rhetoric. We would

not have our beautiful formula (xm)n = xmċn. In other words, the awkwardness of
the notation is an obstruction to more advanced symbolic representation.

An obstruction, yes. But with some bene�t. It unleashed the terms of algebraic

expressions from their ancient geometricmetaphors.¿e square and cube of a num-

ber had been mentally linked to the geometric square and cube since Babylonian

times. Euclid used the word δύναµις (“power,” the word we use when talking about

exponents) to talk about the square. He would say that two magnitudes are “com-

mensurable in power” to signify that the lengths of two distinct lines could be mea-

sured by the same yardstick (in Euclid’s case, the same “pygon stick”). It is not pos-

sible to measure the diagonal of a square and the side of a square with the same

yardstick. So “power” for Euclid was a purely geometrical word, and not the num-

ber formed by multiplying a number by itself.

Chuquet’s numerical notation

,


,


,


, . . . went beyond the possibilities

for geometric metaphor of dimension. One immediate advantage is that we wonder

about how such a notion would extend to negative numbers. Indeed, Chuquet did

wonder. Hewouldwrite 
m
to signify x−, the exponent formof



x . Such notation

forces x to be equal to , a relation that Chuquet knew and used.

In a roundabout way, the Triparty should have contributed to an early develop-

ment of modern exponential notation, supercharging progress in algebra.

But it

did not. It was a hundred and � y years ahead of its time; however, because it was

not printed and distributed, Chuquet and his Triparty were unknown to mathema-

ticians.

And so the whole idea of negative exponents had to wait for its publication

some hundred and seventy years later, when John Wallis used negative exponents

in hisMathesis Universalis.

Stifel published an edition ofDie Coss in , in which our equation x− x+
appears as Zm.Rp.. In such notation, the unknown is Z, and it stands for x. It
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came from the word zensus, an alternative old German spelling of the Latin census,

meaning “number of.”

¿e R represents the square root of Z. In our notation, that

would mean
º
x, which, of course, is always positive. ¿is must have hindered all

thoughts of negative roots that a better notationwould have exposed, and eliminated

at the gate any roots that may end up being imaginary.

By , that same expression (Zm.Rp.) had become Q − N +  and then
later AA− A+ . ¿e advantage to this last notation is that it clearly exhibits the

relationship between the �rst two terms—that is, one notices at a glance that there is

almost nothing di�erent between the �rst and second terms other than their powers.

By writing the polynomial as AA− A+ , we see the relationship between the �rst
two terms, but we don’t “see” that relationship when viewing that same polynomial

as Q − N + . Our modern notation for this polynomial is x − x + .

132 Chapter 13



“Mazur” — // — : — page  — #

Chapter 14

Hierarchies of Dignity

“I feel obliged to speak of the supremacy, among all the mathematical disciplines, of

the subject that is nowadays called algebra by the common people,” Rafael Bombelli

wrote in .

Bombelli was an engineer whose work involved something to do

with reclaiming marshlands and building bridges. His L’Algebra was published in

, but he began working on it twenty years earlier, when he had a break from his

work at draining the Val di Chianamarshes in central Tuscany. In L’Algebra, wemeet

a new kind of notation for the unknown and its powers. Our modern notation for

the polynomial x−x+, for instance, evolved through several intermediate stages
from Cardano’s time to Descartes’s. By our standards, the intervals between stages

were many and long.

Twenty-seven years before Bombelli publishedL’Algebra, whenCardanowas still

writing his Ars Magna, equality was not used with any subordination in mind. ¿e

Latin aequaliswas used liberally to tell us when two expressions were the same, and

that they could be swapped without any loss. ¿e two sides of aequalis had equal

rank.

A few years later, in hisWhetstone ofWitte, Robert Recorde introduced hisGem-

ini markings to northern Europe. It was an elongated form of our “equals” sign, a

symbol that shows up less o en than “+” and “–”, yet more o en than any other in

the vast collection of the whole world’s mathematical writing.

And to avoide the tediouse repetition of these wordes: is equalle to: I

will sette as I doe o en in woorke use, a paire of paralleles, Gemowe
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lines of one lenghte, thus: =======, because noe. . thynges, can be moare
equalle.



¿at Gemini, that twin, that supreme symbol of equation, is an inspired gi to

our modern symbol collection. It was brilliantly designed (possibly by the Italians

before Recorde �rst used it) to keep the notion inmind that there are two things that

are meant to be exactly the same—a simple invention to help the reasoning process.

Bombelli, who surely knew of Recorde’sWhetstone of Witte was still writing the

word fa (“makes”) or eguali (“equal”) when he wanted to tell us that one expres-

sion begat another. You will not �nd an equal sign in L’Algebra. Rarely do we �nd

the words è eguale a between two expressions. We use the term “equals” when we

wish to say that for some useful purpose two things are swappable and that it makes

no di�erence which one you use for that practicality. We might say that four quar-

ters equals one dollar. Quarters are made mostly from copper. Dollar bills are made

mostly of wood pulp and cloth. In physical appearance, they are not the same. For

some practical purposes, such as buying chewing gum at a convenience store, there

is no di�erence. But pay the bill for two people at a fashionable restaurant with quar-

ters, and you will be aware of a di�erence.

L’Algebra, written in Italian, used equality in a di�erent sense than we do.Words

such as fa, faro, eguali, and eguale are unidirectional. Saying sommato  uia , farà 

(“the sumof  and makes ”) is not quite the same as saying “ plus  equals ,” for the

Italian suggests that “” is subordinate to “ plus .” ¿ere is a conceptual di�erence

that obstructs the notion of balance between the two sides of the equality  +  = .
¿e Latin aequalesmeans “equals,” a word that maintains unbiased duality between

perfectly swappable entities, but Bombelli chose to use the unidirectional fara.What

makes Recorde’s notation so appropriate and advantageous is that it suggests the

very duality mathematicians were looking for when they wanted two things to be

freely exchangeable without any unintentional suggestion of subordination.


In , Bombelli would have written x−x+ as . �m.. �p., or sometimes as
. �m.. �p.�, and sometimes, when performing an arithmetical operation between
two polynomials such asmultiplication, where he wanted columns to line up, would
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have written

�
 .m.

�
.p.. We see in �gure . how he was able to square the polyno-

mial −x + x +  to correctly get x − x + x + x + .

FIGURE 14.1 L’Algebra, cover and book II, page 217, Centro di Ricerca Matematica
Ennio De Giorgi.

Examine how Bombelli performed this multiplication to see that he was using

the symbols to perform the algebra. (See �gure ..) Below the �rst horizontal line,

there are two columns, one marked più (“more,” meaning “plus”), the other marked

meno (“less,” meaning “minus”). In the più column, he added the s to get , then

those coe�cients of dignità  to get , and then  again. Next, he multiplied the

coe�cients of dignità  to get  moved up to dignità . And then he multiplied

the coe�cients of dignità  to get  bumped up to dignità . ¿at completed all

operations in the più column. Similar multiplications and additions in the meno

column completed the task. Adding up while not mixing dignità gave the correct

answer as:

�.p.�.p. �.p..m.�.
Whatwe call “exponents,” he called dignità.¿emodern Italian dignità translates

to the English “dignity,” which may seem to be a strange word for what we would

call “power,” or “exponent.” For him, the higher powersmeant hierarchies of dignity.
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He began book II with “Nomi delle dignità, e forma delle lore abbreviature” (Names

of dignity, value, and form of abbreviations). ¿en he listed the dignità:

Tanto �
Potenza �
Cubo �
Potenza di potenza �
Primo relato �
� �
Cubo di potenza di potenza�

Personally, I prefer “dignities” to “exponents”; the word “exponent” comes from

the Latin ex-ponen, which I interpret to mean “upward-placing,” where “upward”

suggests a hierarchy, or ranking of the powers. ¿e word “dignity” in Old English

means “rank”; Shakespeare used it to distinguish two things that are alike yet di�er-

ent in rank:

But clay and clay di�ers in dignity,

Whose dust is both alike.


Bombelli, as we see, was not only inventing genuine symbols when depicting

dignità as little cups holding numbers but also inventing words that were new to

mathematics.

¿ese clever authentic symbols gave algebra its independence from geometry.

For the �rst  pages of his manuscript, Bombelli used the traditional way of writ-

ing polynomials, replacing the Z with a Q for quadrato, so Zm.Rp. became

Q.m.R.p..

Ranking bynumerical hierarchymade the rules of exponentmultiplicationmore

apparent. With the new symbols, it was easier to see that

n� times m� equals n+m( .
But, then, why did Bombelli give us the following long list of redundant products

of dignità?

It looks as if �gure . represents a doodling account of sheep to put modern

readers to sleep. ¿e hard truth is that we tend to look at everything from the point
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of view of what we already know.We know that xnxm = xn+m, because by de�nition
xn is nothing more than the product of n copies of x, and, therefore, all we have to

do is count copies of x to convince ourselves that we could go on forever with any

positive integer values of n andm. Such a general notion, however, would have been

strangely foreign to readers in Bombelli’s world.
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FIGURE 14.2. Bombelli’s redundant products of dignità. Source: L’Algebra, book II,
205–206.

Bombelli was concernedwith certain solutions to the cubic equation x = ax+b,
whenever a and b are positive numbers. One example would be the equation x =
x+, encountered in chapter . A solution comes from a simple guess that x = 
works. But what about the two other solutions that would force us to do absurd

things, such as taking a square root of a negative number?

¿e solutions to the general cubic of the form x = ax+bwas given to us by del
Ferro as:

x =


¿
ÁÁÀb


+
¾

b


− a


+



¿
ÁÁÀb


−
¾

b


− a


.

(See chapter .)
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Apply del Ferro’s formula to the equation x = x + , where a =  and b = .
It yields x = . Where are the other two solutions that we modern mathemati-

cians know about? On the surface, del Ferro’s formula gave us just one solution,

even though the square roots inside the cube roots are not negative. We said x = ,
but if we actually substitute  for a and  for b, we �nd that x = 

º
 + 

º
. Yes,


º
 =  and


º
 = . But if we want to actually �nd


º
, we would set x = 

º
,

and try to �nd x. ¿at would mean �nding a solution to the equation x = , and
by our modern notation we would know that x− = .¿e le side splits into the

product (x − )(x + x + ).
¿is last equation has three solutions, one coming from x−  = , and the other

two coming from the quadratic equation x − x +  = When we add all solutions

to x = 
º
 and x = 

º
, we get x = , and x = − �

º
−, all three solutions to

x = x + .
Imagine Bombelli encountering these strange things that are square roots of

negative numbers. What happens in his L’Algebra book II is fascinating, but if we

explore this further we would be steering o� our intended direction. For an easy

diversion in that direction see chapter  of Barry Mazur’s wonderful (“outstand-

ing”—if I could really get away with my sincere but suspiciously nepotistic superla-

tives) Imagining Numbers. For now, let us be satis�ed with knowing that Bombelli

encountered and accepted imaginary numbers, and even created an abbreviated no-

tation for them.

A contraction of the più radice di meno (“more of the minus root”) became più

di meno and further abbreviated to p.dm. So
º
− would be written as p.dm., and

º
− would simply be p.dm. It would be a long time before the symbol i arrives to

represent
º
−, but p.dm was quite an advance because arithmetic errors are less

likely to happen with proper notation designed to avoid them.¿emistakes of writ-

ing
º
−

º
− =

º
 and

º
−

º
− =  that Euler would make two hundred years

later would have been avoided with notation that would mark the �rst product as

(i
º
)(i

º
) to get −

º
, and the second product as i(i

º
) to get −. Of course,
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Euler must be excused, as he was blind at the time these mistakes happened in the

printing of his Elements of Algebra. Although Euler was the one who introduced us

to the symbol i for the imaginary number
º
−, it didn’t appear again until Gauss

used it in .


Simon Stevin would have written the polynomial x − x +  as   -  +  .

Somehow, the cosa, the “root,” the “thing”—whatever the unknownwas called—was

understood, and therefore le out of the notation altogether. In , François Viète

would have written that same polynomial as A quad −  in A+ plano. ¿en in ,

¿omas Harriot would have written it as xx − x + . He also did something ex-
tremely clever. Until that point in time, mathematicians were interested in the roots

of polynomials—that is, in the numbers that would make the polynomial equal to

zero. Harriot had the ingenious idea of �rst setting the polynomial equal to zero,

thereby setting up an equation, a polynomial equation, and asking for the numbers

that satisfy the equation. You might think this is only a grammatical di�erence, and

that it could not lead to anything new. But it opened a door to a whole new way

of thinking about polynomials. He saw that a polynomial could be built up from a

product of its factors, just as a number could. For example, as we will see later that

x − x − xx + x −  = (x − )(x − )(x − )(x + ).
¿is ingenious idea was a game-changer—the problem of �nding the roots of

polynomials quickly became the problem of factoring polynomials. It was a slight

grammaticalmaneuvering that advanced the possibility that every polynomial equa-

tion has a root, possibly a real number or a complex number. Proving it generally

with satisfactory rigor was beyond seventeenth-centurymeans. Such a general proof

would have to wait almost two hundred years, when it would take on the general

form that we now know as the fundamental theorem of algebra, which tells us that

any polynomial has as many roots (counting multiple ones) as its highest power.

Even more signi�cant: the idea gave mathematicians a sense of proper algebraic

form. By putting all terms on the le of an equation and leaving an isolated zero on

the right, the form comes to the forefront. ¿e equation x + x +  =  falls into a
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category recognizably distinct from, say, x +  = , and the equation x + x +
x +  =  falls into a third category. Algebra was not just about equations, but also
about forms.

And �nally, in  René Descartes had the idea of using numerical superscripts

tomark positive integral exponents of a polynomial in his La Géométrie, a work that

could be read easily by anyone tuned to our modern notation. ¿at simple idea of

ranking the individual powers numerically, which seems obvious to us modern folk

who see the powers as a counting of the number of times the variable is multiplied

by itself (that is, x as x ċx and x as x ċx ċx), at once transformed the way we see and
work with polynomials. Descartes was extending the tradition of writing x for the

unknown and xx for x that was started by Viète and Harriot, to a ranking scheme.
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Chapter 15

Vowels and Consonants

François Viète, who wrote under the Latin name Franciscus Vieta, was a French

mathematician having the great advantage of working in an era of abundant math-

ematical contributions from the Italians, Germans, and English.

He expressed his famous computation for π entirely in six paragraphs of 

words in proposition II of his Isagoge.

Propositio II

Si eidem circulo inscribantur polygona ordinata in in�nitum, & nu-

merus laterum primi sit ad numerum laterum secundi subduplus,

ad numerum vero laterum tertii subquadruplus, quarti suboctuplus,

quinti subsexdecuplus, & ea de inceps continua ratione subdupla.

Erit polygonum primum ad tertium, sicut planum sub apotomis

laterum polygoni primi & secundi ad quadratum à diametro.

Ad quartum vero, sicut solidum sub apotomis laterum primi se-

cundi & tertii polygoni ad cubum à diametro.

Ad quintum, sicut plano-planum sub apotomis laterum primi se-

cundi tertii & quarti ad quadrato-quadratum à diametro.

Ad sextum, sicut plano-folidum sub apotomis laterum primi se-

cundi tertii quarti & quinti polygoni ad quadrato-cubum à diametro.

Ad septimum, sicut solido-solidum sub apotomis laterum primi

secundi tertii quarti quinti & sexti polygoni ad cubo-cubum à di-

ametro. Et co in in�nitum continuo progressu.

His proposition II tells us how to approximate π by �rst inscribing a square in a

circle, projecting the bisection of each side out to the circle to get an octagon, and
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repeating the process, �rst with the octagon, and then again and again with each

resulting polygon.

It is an old method of Archimedes, tweaked a bit to make the

calculations simple. Viète ends his proposition with the six-word sentence, Et eo in

in�nitum continuo progressu, which translates to “And we continue it progressively

into the in�nite.”¿is is the �rst time (as far as I know) where any European author

has used this idea of continuing an algebraic process inde�nitely. In the end, we

�nd π by �nding 

π to be equal to the following in�nite product of in�nitely nested

terms:




π
=

º



ċ
»
 +

º



ċ

¼
 +

»
 +

º



�

Even Rudol� and Chuquet had no proper notation for expressing such an in-

�nite sum of nested square roots, though conceivably some of the earlier German

manuscripts could have.

Early in his career Viète would have written the polynomial equation x−x = 
as quadratum in A, minus A ter aequetur , where the A represented the unknown

that we would designate as x. At other times, he would have used + and − to sym-
bolize plus and minus in order to write that same equation as quadratum in A,−A
ter aequetur .

Later, he wrote, X quadratum in A ter, minus A cubo, aequetur X quadrato in B.

¿is translates to XA− A = XB (or, what we would write as ax − x = ab),
which is the equation one gets from trying to trisect a given angle embedded in a

circle of radius X whose chord is B. ¿e A represents a chord that is the unknown

third of the angle. Here, the variable is A, not X.

Viète was showing us an intimate link between Greek geometry and algebra, a

link from the mathematics of lines, �gures, and solids to the underlying channels

of symbolic algebra, a link that had been there all along but hardly ever fully appre-

ciated. Yes, there had been commentators who saw the links very clearly. Heron of

Alexandria �gured an algebraic approach to Euclid’s geometry in the �rst century,

and Petrus Ramuswrote about the connections between geometry and algebra in his

Twenty Seven Books of Geometry in . But it was Viète who made them clearer

than they had ever been.
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In his Geometria, Viète was interested in equations of the form XA− A =
XB. ¿ey are what are now called “homogeneous equations,” where the sum of

the powers of the letters in each term is . ¿e idea was to add terms only of the

same dimension. Equations of such form appear in Euclid’s Elements. Book II is all

about the geometry of rectangles, squares, and other �gures. If you are wondering

how geometry could be algebra, think of it this way: the operation of addition or

subtraction is the same as extending or cutting o� lines; the product of two numbers

a and b is the same as the geometric construction of a rectangle having adjacent sides

a and b. Extracting the square root of a is the same as �nding a square whose area

is a. We are able to see this from an algebraic point of view; however, Euclid was

proving a geometric theorem, not an algebraic one.

Inspect proposition  from Elements, book II, for hints of algebra. It says:

If a straight line be cut at random, the square on the whole is equal to

the squares on the segments and twice the rectangle contained by the

segments.

¿ough this is a translation into English, the meaning may seem foreign. ¿e

phrases square on the whole, squares on the segments, and rectangle contained by the

segments need interpretation. For now, trust that their meanings will become clear

on further examination.

Mark the two ends of the line as A and B, and the random cut as C. We use the

convention that any line whose ends are marked by letters—say, A and B—will be

labeled AB. Also, any rectangle whose four corners are each marked by a letter will

be labeled as a juxtaposition of those four letters. Construct a square with side of

length AB. Label the corners of that square A, B, E, D, as they are in �gure ., and

draw a line CF perpendicular to AB at C.

Now we can interpret square on the whole to mean the square whose side is the

whole (original) line AB; that would be the square ABED (see �gure .). Likewise,

the square on a segment means the square whose side is a segment of AB. ¿ere

are two such squares; one is HGFD and the other is CBKG. We take the rectangle

contained by the segments to mean the rectangle whose sides are the lengths of the
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FIGURE 15.1 The square on the whole.

two segments cut by C; that rectangle is ACGH. From the illustration, we see that

the area of ABED is equal to the area of HGFD plus the area of CBKG plus the area

of ACGH plus the area of GKEF.

Just by letting a = AC and b = CB and looking at that last sentence algebraically,
we �nd that

(a + b) = a + b + ab.

It is an identity that we can prove from just a few basic laws of arithmetic.


ButViète was still usingwords and sentences rather than abbreviations and sym-

bols to work in his version of algebra. It seems that he preferred the words, even

though he was familiar with Recorde’s, Bombelli’s, and Stevin’s notation. His great

contribution to algebra was not an introduction of new operational symbols. ¿ere

are virtually no new operational symbols in Viète’s works; rather, it was the abstract

use of letters to represent themore general nature of the objects in play, togetherwith

the magni�cent idea that those letters were also to be subject to algebraic reasoning

and rules just as much as numbers. Even in al-Khwārizmı̄’s time, it was known that

common factors in an equation may be cancelled. Viète generalized the notion of

cancellation to let us know that if, say, BE + BE = B, then E + BE = B, and

also that if, say, BE + BE = E, then BE = B = E. In other words, nonzero
unknowns are canceled by the same rules as those governing the cancellation of

knowns.
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Why was that not done before? One answer is that it would have been confusing

to write the polynomial almost entirely in letters. We write the quadratic polyno-

mial as ax + bx + c and can immediately distinguish the unknown quantity from
the speci�cally known. Earlier notation did not provide such a clear distinction be-

tween knowns and unknowns. A second answer is that the performance of arith-

metic operations (addition, subtraction, multiplication, division, and root extrac-

tion) on abstract magnitudes seemed to be merely symbolic gestures that had no

computational advantage. To write � =  is a comfortable operation that groups
three things with four things. But what could be the advantage of writing Bmultipli-

cata per C aequalis B multiplicata per C? It’s like giving the suspiciously redundant

tautology B� C = BC.
Viète used vowels to represent unknowns, and consonants to represent knowns.

¿at convention does two things: it avoids confusion between representations of

knowns and unknowns and—more importantly—permits us to have multiple un-

knowns. An equation could then distinguish between the unknowns. For instance,

the equation XE−U = XB is about two unknowns, E andU, though we would

write the equation as ax − y = ab, where a and b are known constants, and x
and y are unknowns.

¿ere is another advantage of Viète’s lettering system. ¿e vowel A was used

to mark the unknown quantity, and the successive powers were then marked as A

quad., A cubus., A quad. quad. Like Chuquet’s system, where the roots were marked

—and therefore ranked—as

,


,


,


. . .—Viète’s system provided a mental

connection between the ranked powers of a single unknown, in just the same way

our notation x,x,x,x, . . . does. ¿ough no new operational symbols were used

in all of Viète’s writing, the introduction of his system of letters was almost essential

to further advancement in mathematics.

Today, we may think Viète’s lettering system is such an obvious notational con-

venience, but even as late as the end of the sixteenth century, such a notion was rev-

olutionary. For that, he too is sometimes accepted into the fathers of algebra family.
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Viète’s vowel-consonant notation had a short life, but it inspired a huge advance

for symbolic algebra. It seems hard for us to conceive such an idea as being so clever.

For us, it is natural for letters to represent �xed known numbers and variable un-

determined numbers. But we are products of intelligent habit. We learn things and

forget that there was ever a time when we had to learn them to know them.We, who

live in the second decade of this twenty-�rst century, may now �nd cell-phones and

GPS navigation technologically sophisticated, but in the next century, when such

phenomena will be replaced by even more advanced phenomena, people will look

back and think of our advances as we now view the simplicity of, say, the typewriter,

or the garden hose. Immersed in our own common use of symbols, it is di�cult to

conceive of why Viète’s idea had not occurred to so many of the brightest mathe-

maticians from Diophantus to Bombelli.

One might think that there is hardly a conceptual di�erence between Rudol� ’s

, Fibonacci’s res, Chuquet’s , and Viète’s vowel-consonant notation. But there is.

Viète’s vowels neither drag along the taboos of culture nor restrain perceived notions

of what number is supposed to be. Both and resmean what they say. Even Chu-

quet’s means what it says.¿ey are not symbols in any true sense, since they carry

preconceptions representing things that they resemble. Viète has given us some-

thing more than merely new notation. His A (our x) is a true symbol; it transcends

the concreteness of the object it is assumed to represent. Tobias Dantzig once wrote,

“It is this power of transformation that li s algebra above the level of a convenient

shorthand.”

But there is another bene�t to the vowel-consonant notation. ¿e advantage

that comes from being able to perform operations on Viète’s vowels and consonants

while transforming awkward literal expressions into more convenient equivalent

forms. It is that advantage of transformation, Dantzig again tells us, that “li s alge-

bra above the level of a convenient shorthand.”

And still there is another feature: the vowel-consonant notation that li s algebra.

Imagine what algebra would be like if instead of dealing with the general expression

ax + bx + c, we had to specify what the coe�cients a, b, and c were as numbers. It
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would mean that any solution to a problem involving, say, the individual quadratic

polynomial x + x +  would be thought of as di�erent from, say, the individual
quadratic polynomial x + x + , even though the �rst polynomial would quickly
suggest a concrete procedure for solving the second. Each expression would have to

be handled di�erently, though of course there would be clues on how to proceed.

Viète’s wonderful vowel-consonant notation gives us a way of contemplating and

working with the collective, the general, the any, and the all.¿is too, Dantzig would

agree, is the power that “li s algebra above the level of a convenient shorthand.”

More signi�cant is the role it played in forming the generalized number concept.

Before Viète, algebraists would have seen x+x = , x−x = , and x−x+ = 
(using our x-for-the-unknown notation) as distinct types of quadratic equations,

which, of course in a certain sense, they are. It was assumed that an expression of

the form “square and something times an unknown equals a number” is not the

same thing as “square equal to something times an unknown and a number.” ¿at

was not at all due to any timidity in manipulating symbols, but rather due to the

troubles and dilemmas concerning negative numbers and zero.

We see all three at

once to be of the same form: x + bx + c = .
¿e �rst equation is satis�ed by x = , the second by . . .well, it doesn’t seem to

have a rational solution, and neither does the third. We know now that the second

equation has two solutions: x =  +
º
 and x =  −

º
. When we try to �nd the

solutions to x − x+  = , we end up with symbols that look like x = +
º
−, and

x =  −
º
−.

¿ese last two solutions had no meaning in Viète’s lifetime. But when expressed

in general terms with notation such as x+bx+ c = , we �nd that the solutions are
always

x = −b �
º
b − c


.

¿at general solution called for a distinction by species.

. ¿ose solution candidates where b − c is a perfect square: perfectly acceptable
solutions.
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.¿ose solution candidates where b−c is not a perfect square and b A c: suspi-
cious solutions. Still not accepted as valid, although on the verge of acceptance.



. ¿ose solution candidates where b < c: completely meaningless solutions, the
complex numbers, whose existence as numbers were denied.

Here is De Morgan on the topic:

[Viète] concluded that subtraction was a defect, and that expressions

containing it should be in every possiblemanner avoided. “Vitiumnega-

tionis,” was his phrase. Nothing could make a more easy pillow for the

mind, than the rejection of all which could give any trouble;. . .¿e next

and second step,. . . consisted in treating the results of algebra as nec-

essarily true, and as representing some relation or other, however in-

consistent they might be with the suppositions from which they were

deduced. So soon as it was shown that a particular result had no ex-

istence as a quantity, it was permitted, by de�nition, to have an exis-

tence of another kind, into which no particular inquiry was made, be-

cause the rules under which it was found that the new symbols would

give true results, did not di�er from those previously applied to the

old ones. . . .When the interpretation of the abstract negative quantity

showed that a part at least of the di�culty admitted a rational solution,

the remaining part, namely that of the square root of a negative quan-

tity, was received, and its results admitted, with increased con�dence.


De Morgan may not have had it quite right from a modern historian’s point of

view. ¿ese strange species were known long before Viète’s time. ¿e Pythagoreans

encountered irrational numbers soon a er thinking about squares and right trian-

gles, andCardano had timidly pondered complex numbers in hisArsMagna in .

But Viète’s notation brought those “true” and “�ctitious” roots closer to the surface

because the general notation exposed one important fact: that they had relevance as

intermediate solutions to real problems—that is, somehow, the algebraic solutions

gave correct answers, even though they involved meaningless steps.

¿ey may have been meaningless solutions in the sixteenth century, but in the

seventeenth century, with more general notation, more attention was paid to the

meaningless than had ever been paid before. So that attention called out the ques-

tion: What is number? A fundamental question. But it was also a deep one, far too
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deep for calling before its need. Our more sophisticated concept of number now ac-

cepts the square root of a negative number into the family. ¿at enrichment gave us

the fundamental theorem of algebra, which tells us that any polynomial of any degree

n C  always has n roots that may or may not be distinct.

Of course, those roots

may be (and are likely to be) complex numbers. Why fundamental? Two reasons at

least: () because it tells us that every polynomial is just a product of degree- poly-

nomials, each of the form (x− r), where r is a root; and () because it guarantees an
answer to every question that leads to a polynomial.

And Viète’s more general notation called attention to another question: What is

form?¿eequation ax+by+c =  is almost all letters.¿e letters a, b, and c represent

known values, whereas the letters x and y take on a whole range of unknown val-

ues.We think of a, b, and c as representations of values, without any interest in what

they actually are.¿us, the entire equation is �rst and foremost thought of as a rela-

tionship between x and y. But once that relationship is established, this marvelous

understanding of notation permits us to further examine the form ax + by+ c = 
by varying the values of a, b, and c (so-called parameters) and thereby set up a fam-

ily of relationships between x and y. ¿e form of an equation then becomes a new

object of study, one that leads to a classi�cation of equations that could not have

been dreamed of without the symbolic distinction between the two sets of values,

constants and variables.

Viète �nished his Isagoge with the last four words all in capitals, and put his pen

down for the �nal full-stop punctuation mark. He wrote:

Denique fastuosumproblemaproblematumarsAnalytice, . . . jure �bi adro-
gat, Quod est, NULLUM NON PROBLEMA SOLVERE.

Translation: Finally, the analytical art,. . . appropriates to itself by right

the proud problem of problems, which is, TO LEAVE NO PROBLEM

UNSOLVED.
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Chapter 16

The Explosion

René Descartes’s Geometria was published just thirty-four years a er Viète died. It

had a new idea for notation, a rule: beginning letters of the alphabet were to be

reserved for �xed known quantities and latter letters (past p) were to represent vari-

ables or unknowns that could take on a succession of values. Descartes seems to

have followed ¿omas Harriot’s practice of using lowercase letters, though he de-

nied ever having seen Harriot’s writings. To this day, this division of the alphabet at

p remains the loose standard rule.

¿eGerman philosopher Daniel Lipstropius, a contemporary and biographer of

Descartes, told us that Descartes’s most brilliant idea came to him while watching

a �y crawl along a curved path. It was a fable of course, implying that the Carte-

sian coordinate system owes its origin to Descartes describing the path in terms of

its distance from the walls, that a �y was responsible for one of math’s most radi-

cal shi s: a relatively early marriage of algebra and geometry. It was a fable because

Descartes’s coordinate system looked nothing like our modern one with its hori-

zontal and vertical axes indicating related variables.

¿e story later in�ated into a

more sweeping �ction of how Descartes, because of his poor health, would lie in

bed late each morning meditating on how all of science could be made as certain as

mathematics.

If the �y traced a curved path in space, it would also have le a trail of arith-

metical data, and Descartes would have understood that the geometry of the curve
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could be reconstructed from the arithmetical data and, conversely, that the arith-

metical data could be reconstructed from the geometry of the curve. Geometry and

arithmetic were simply di�erent interpretations of the same mathematics: algebra

and geometry are intimate echoes of each other. Miraculous!

It’s true that Descartes was in the habit of lying in bed till late morning think-

ing about his surroundings and existence. As a boy, he was permitted to stay in bed

to nurse his uncontrolled coughs, which seemed to fade by a ernoon. Poor medi-

cal advice for someone probably su�ering from postnasal drainage that would have

been relievedmore quickly by getting out of bed. Nevertheless, he probably thought

about the physical world, how it is fundamentallymechanical, how everything in na-

ture can be explained through the laws of mechanics, how all of theoretical physics

should be expressible through a small number of general laws and observable facts

of nature, and how a small number of principles and fundamental equations, could

be expressed through algebraic equations.

¿ere is that wonderful Pythagorean theorem that tells us that there is a struc-

tural relationship between three squares sharing sides with a right triangle. How is

it that that theorem gives us an easy way of �nding the distance between any two

points in space? And how is it that we are able to represent straight lines and conic

sections (ellipses, parabolas, and hyperbolas, those curvesmarked by a plane cutting

through a cone) by equations and proportions?

¿e intimate link between geometry and algebra had been suspected since Plato’s

time, when mathematicians of the Academy worked on trisecting angles, duplicat-

ing cubes, and squaring circles. In the third century bc, Apollonius of Perga inves-

tigated curves that could be produced by cutting a cone by a plane—the ellipse, the

parabola, and the hyperbola. Heron of Alexandria �gured out an algebraic approach

to calculating surfaces and volumes in the �rst century.¿e geometer Pappus, a con-

temporary of Diophantus, hinted that there should be some connection between

geometry and algebra. Menaechmus, in the fourth century, discovered connections

between conic sections and equations, and early Greek geographers made free use
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of coordinate systems. Nicole Oresme, in , workedwith a system of latitudes and

longitudes introducing early ideas of a coordinate system, complete with a horizon-

tal line to represent time and a vertical line to represent speed.

Geometry had its origins in the interest of working with lines, �gures, and solids

that could be imagined in the mind. Algebra had its origins in problems involving

number—number hinged by geometric conceptions of iconic �gures. By the late

Middle Ages, algebra was progressively focusing on more abstract notions of num-

ber, especially a erViète advanced the notation to include constants and unknowns,

a notation that liberated algebra from the con�nes of geometric metaphor. It could

leap toward its more general purposes, a concentration on abstract magnitudes.

We saw that the algebraic operations of addition, subtraction, multiplication,

division, and extraction of a square root all have matching operations in geometry.

But could those operations actually be performed? Viète knew that the product of

two numbers a and b is the same as the geometric construction of a rectangle having

adjacent sides a and b, and that extracting the square root of a is the same as �nding

a geometric square whose area is a. But how could it be done, actually?

Descartes showed us how to on the second page of his Geometry. First, multi-

plication: suppose we have two line segments labeled AB and AC. Place them in any

way or place, but have them joined at end A. (See �gure ..)

	  

A B 

D 

E 

C 

1 unit 

FIGURE 16.1 Multiplication.

On AB, mark o� a line segment of one unit, and label it AE. You may have to

extend AB if it is shorter than one unit. Connect E to C, and construct line BD

parallel to EC. From the similar triangles we see that AD is to AB as AC is to ,

and therefore AD = AB� AC.
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To divide, use the same set up; notice that the quotient AD~ABmust equal AC.
To �nd the square root of AB, extend AB by one unit to C. (See �gure ..)

	  

A B 
O 

D 

C 
1 unit 

FIGURE 16.2 Root extraction.

Bisect the line AC at O. Construct a circle of diameter AC centered at O. Draw

a line at B perpendicular to AC. It meets the circle at D. ¿en BD =
º
AB.

All these operations are constructible with straightedge and compass, and there-

fore provable from Euclid’s axioms. And any problem that can be expressed through

a geometric construction that uses straightedge and compass alone can also be ex-

pressed by a polynomial equation of degree one or two.

¿e Cartesian coordinate system is more than just an orienting system, more

than just a way to get from here to there. It is a way to see geometry through the

lens of algebra. Descartes (and Fermat too) gave us something incredibly special.

He showed us that thinking itself has optional modes. He taught us that we have

optional modes for conceptualizing problems. We may wish to attack the question

of whether or not an arbitrary angle can be trisected using straightedge and compass

alone, an ancient problem of geometry. It may be naturally expressed geometrically

with words such as “line” and “angle.” But sometimes we are fooled by what we think

is natural, entrapped and limited by unnecessary contortions of conceptualization.

Descartes gave us away to switch betweenmodes of conceptualizing, to translate

geometric problems to an algebraic coordinate system. Points, lines, and curves of

the Greek geometers were free to be represented by abstract algebraic expressions,
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freed from the shackles of our physical impressions of space, enabling imagination

towander far beyond the tangibleworldwe live in, and into themarvels of generality.

Trisecting an arbitrary angle turns out to be a question about whether or not a

rational root to a particular cubic equation exists. Descartes could not have known

the answer, which we now know: the root in question does not exist.

To see how the Cartesian system gives us the link between geometry and alge-

bra, we brie�y remind ourselves what we either learned or missed in high school

math. Keep in mind that the coordinate system invented by Descartes (as well as by

Fermat) was not quite the system we use today. In fact, it was not the �rst idea of a

coordinate system: the fourteenth-century cleric Nicole Oresme had a similar idea.

But Descartes’s idea was a kick-starter for today’s more developed concept that was

introduced later. We start by viewing the world on a �at plane with a �xed bench-

mark chosen arbitrarily, just as youmight �x a tall building to orient a walk through

an unfamiliar city. We label the benchmark (,), a symbol whose design will soon
become clear. (See �gure ..) ¿e �at plane, like the �at surface of a computer

screen, has horizontal and vertical number lines through (,), where distances in
the directions of the arrows are positive, and distances in the opposite directions are

negative.

	  

FIGURE 16.3 The address of a point.

Pick any point in that �at plane. For the moment, call it P, and ask where P

is in relation to our benchmark (,). One natural description (though there are
others) for P’s position is how far it is (positively or negatively) in relation to the

arrows (using whatever units you wish) in the horizontal and vertical directions
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from (,). For example, (,) is the address of the black point in the upper-right
corner, and (−,) is the address for the black point at the le of the circle.

To represent a circle of radius  centered at (,) using this wonderful system,
all we have to do is describe an arbitrary point (x, y) on the circle as one end of a
line joined to (,), which is a er all the radius of the circle and therefore always
equal to  units in magnitude. By the Pythagorean theorem applied to the triangle

of base x and height y, we have x + y = 

. Every pair of numbers x and y that

satis�es the equation x + y =  will give a coordinate address of a point on that
circle of radius . Conversely, any point on that circle will have a coordinate address

(x, y), where x and y satisfy the equation x + y = . We used the circle merely as

an example to show how surprisingly simple the linkage is.

It would seem that Descartes would have con�dently used the equations of his

analytic geometry to solve problems of geometry. He solved them, but always found

aneed to con�rmhis algebra proofs by geometry.

Newton andLeibnizwould do the

same in their in�nitesimal calculus. It may have been simply that they were holistic

mathematicians who wished to see all the strings.

Surprising as it may seem (beyond the convention of using lowercase letters),

using beginning letters of the alphabet for �xed known quantities and latter letters

for unknowns, Descartes invented very few new symbols. He introduced a tweaking

of Bombelli’s and Stevin’s indexing of powers of the unknown, and used superscripts

to show the numerical powers of the unknown. Oh—and, yes—there is the matter

of the vinculum, that horizontal bar joined with the old German symbol for square

root
º
to indicate that all terms beneath the bar are to be grouped together before

the root is extracted. It is our modern symbol for square root
º

. We have

seen how important an advance it is.

In Geometria, Descartes writes:

Et aa, seu a, admultiplicandam a in se; Et a, ad eandumadhuc semel

multiplicandam per a, atque ita in in�nitum; Et sqrta + b, ad ex-
trahendam radicem Quadratam ex a + b; Et

º
C.a − b + abb, ad

extrahendam radicem Cubicam ex a − b + abb, & sic de cæteris.
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Translation: And aa, or a to multiply a by itself; And a, once more
multiplied by a, and so on inde�nitely; And

º
a + b, for the extrac-

tion of the square root of a + b; And
º
C.a − b + abb for the ex-

traction of the cube root of a − b + abb, and so on.

Here, we have the blending of the German radical sign

º
with a vinculum to

cover the expression whose root is to be extracted. Our current symbol 
º
for cube

root would not appear for another thirty years, when it appeared in several places

at once: in Michel Rolle’s Traité d’Algèbre and in a letter from Gottfried Wilhelm

Leibniz to Pierre Varignon.


¿en, on page  of Descartes’s Geometria, we �nd polynomials written the way

we would, except for that strange symbol

  

 

 

 

 

  

 

 

 

 

 

 

 

Z   b,  aut 

Z2  -  aZ + b2,  aut 

Z3  + aZ2 + b2Z – c3,  aut  

Z4   + aZ3 + b2Z2 – c3Z + d4,  &c.  

 

that Descartes would use to write “is

equal to.”

¿e z-like �gure is just a �amboyant script z.

  

 

 

 

 

  

 

 

 

 

 

 

 

Z   b,  aut 

Z2  -  aZ + b2,  aut 

Z3  + aZ2 + b2Z – c3,  aut  

Z4   + aZ3 + b2Z2 – c3Z + d4,  &c.  

 
Onpage , for the �rst time,we �nd a perfectly readable account of the equation

that almost looks as if it is out of a twentieth-century textbook.


Sciendum itaque, quòd icognita quatitas in qualibet Æquatione, tot

diversas radices seu diversos vatlores habere pro�t, quot ipsa habet di-

mensiones. Nam si, exempli gratiâ, x supponatur æqualis , seu x − 
æqualis nihilo; & rursus x

  

 

 

 

 

  

 

 

 

 

 

 

 

Z   b,  aut 

Z2  -  aZ + b2,  aut 

Z3  + aZ2 + b2Z – c3,  aut  

Z4   + aZ3 + b2Z2 – c3Z + d4,  &c.  

 

, seu x − 
  

 

 

 

 

  

 

 

 

 

 

 

 

Z   b,  aut 

Z2  -  aZ + b2,  aut 

Z3  + aZ2 + b2Z – c3,  aut  

Z4   + aZ3 + b2Z2 – c3Z + d4,  &c.  

 

; & multiplicetur x − 
  

 

 

 

 

  

 

 

 

 

 

 

 

Z   b,  aut 

Z2  -  aZ + b2,  aut 

Z3  + aZ2 + b2Z – c3,  aut  

Z4   + aZ3 + b2Z2 – c3Z + d4,  &c.  
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Z   b,  aut 

Z2  -  aZ + b2,  aut 

Z3  + aZ2 + b2Z – c3,  aut  

Z4   + aZ3 + b2Z2 – c3Z + d4,  &c.  

 

 ; habebitur xx − x + 
  

 

 

 

 

  

 

 

 

 

 

 

 

Z   b,  aut 

Z2  -  aZ + b2,  aut 

Z3  + aZ2 + b2Z – c3,  aut  

Z4   + aZ3 + b2Z2 – c3Z + d4,  &c.  

 

, seu xx
  

 

 

 

 

  

 

 

 

 

 

 

 

Z   b,  aut 

Z2  -  aZ + b2,  aut 

Z3  + aZ2 + b2Z – c3,  aut  

Z4   + aZ3 + b2Z2 – c3Z + d4,  &c.  

 

x − . quæ Æqua-

tio est, in qua quantitas x valet , & præterea etiam . Quòd si rursus

�at x
  

 

 

 

 

  

 

 

 

 

 

 

 

Z   b,  aut 

Z2  -  aZ + b2,  aut 

Z3  + aZ2 + b2Z – c3,  aut  

Z4   + aZ3 + b2Z2 – c3Z + d4,  &c.  

 

, atque x − 
  

 

 

 

 

  

 

 

 

 

 

 

 

Z   b,  aut 

Z2  -  aZ + b2,  aut 

Z3  + aZ2 + b2Z – c3,  aut  

Z4   + aZ3 + b2Z2 – c3Z + d4,  &c.  

 

 multiplicetur per xx − x + 
  

 

 

 

 

  

 

 

 

 

 

 

 

Z   b,  aut 

Z2  -  aZ + b2,  aut 

Z3  + aZ2 + b2Z – c3,  aut  

Z4   + aZ3 + b2Z2 – c3Z + d4,  &c.  

 

, produce-

tur x − xx + x–
  

 

 

 

 

  

 

 

 

 

 

 

 

Z   b,  aut 

Z2  -  aZ + b2,  aut 

Z3  + aZ2 + b2Z – c3,  aut  

Z4   + aZ3 + b2Z2 – c3Z + d4,  &c.  

 

. quæ alia e Æquatio, in qua x habens tres
dimensiones, tres quoque habet valores, qui sunt , , & , atque una

falsa, quæ es .

Descartes writes that if we multiply the polynomial x −  by x − , the result is
x−x+. If wemultiply that by x−, we get x−xx+x−, and if we continue
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and multiply that last polynomial by x + , we get x = x − xx + x − . So
the roots of the polynomial x = x − xx + x −  are , , , and −, and
therefore x = x− xx+ x−  and (x− )(x− )(x−)(x+ ) are just two
di�erent representations of the same polynomial.

In the preceding chapter, we saw how Viète’s introduction of consonant letters

of the alphabet advanced algebra. Before letters were used for that kind of represen-

tation, the polynomial notations of Chuquet, Bombelli, and Stevin were perfectly

adequate. ¿e square or cube of a known number could be calculated to get an-

other known number; there is no need to write 

when you just mean . In any

polynomial, only the unknown quantity was raised to a power, and that unknown-

to-a-power could not be directly calculated. So, for sixteenth-century manuscripts,

it was �ne to write 

for x, to write  for x, and to write  for . Chuquet,

Bombelli, and Stevin used such a so-called Index Plan for writing exponents with-

out ambiguity.

However, there was a problem. A polynomial could have more than one un-

known, an x and a y, for instance; so x+y could not be written under the Index
Plan. We favor Descartes’s notation mostly because it is our own, but also because

it is preferable to the ambiguous notations that came before it, and also because no-

body has come up with anything better, . . . yet.

A symbolmay become conventional and remain in use for centuries, until some-

thing happens to advance a context inwhich it appears to create obstructions. It hap-

pened to the sixteenth-century Index Plan. Polynomial algebra notation now has

a seasoned notation that is unlikely to change over the next millennium. Pacioli’s

lasted on and o� in some places for close to two hundred years. Rudol� ’s

º
had

some minor tweaks as it competed with other less worthy attempts to mark square

roots, but didn’t change for a hundred years, until Descartes added a vinculum.

In Descartes’s Geometria, we see our very own square root symbol (�gure .

top) as the German symbol for square root

º
with a vinculum added to unify the

terms whose root should be extracted.

Some people must have thought that the

was there to stay, just as we now think that our exponent notation is here to stay.
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FIGURE 16.4 The vinculum in René Descartes, Geometria (1659), page 3.

¿ere is a nesting of square roots, from which, without much imagination, we

can foresee a continued nesting that could be used to show o� Viète’s wonderful

proposition II (in chapter ) that approximates


π .

Florian Cajori tells us that Descartes introduced the new radical sign, vinculum

and all. ¿e curious puzzle is this: who actually came up with the idea of the vin-

culum?When Francisci van Schooten edited Viète’s Opera mathematica in , he

already used the vinculum in his commentaries. Hmm,. . . the �gure (�gure .) is

from a page of van Schooten’s edition of Descartes’s Geometria, published in .

Could van Schooten have slipped the vinculum into the Geometria to simplify Des-

cartes’s meaning?

Fortunately for us, Descartes had great in�uence as a mathematician and was

able to help standardize the best notation going into the next century. ¿e seven-

teenth century was �lled with experiments using all sorts of odd and cumbersome

notation that could have impeded progress in mathematics for years.

For Greek geometers, a curve was more or less a static �gure. Descartes was be-

ginning to think of a curve di�erently. His coordinate system was thought to be a

collection of dynamically moving points determined by a rule (its equation), an al-

gebraic object with addresses (that is, points) indicated by real numbers x and y.

¿ose real numbers, the “coordinates,” were locked together in a co-ordered nu-

meric relationship; one could not change without the permission of the other. ¿is
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new geometry looked at curves as relations between variables. It was a very great ad-

vance, one that radically changed the tactics and manner of mathematics, one that

made calculus possible, and one that changed forever how we think of motion.

A typical early-seventeenth-century empirical observation would have shown

the height of a projectile at various times as a table of values.¿ere were no clues for

�nding heights at times when the projectile was not observed. With the notion of a

graph, and an algebraic equation relating a height h to any time t, came an intuitive

understanding of how height changes smoothly as time changes, a picture of how

the numbers were climbing or descending.

¿e unity of geometry and algebra was one of the greatest discoveries. At once,

it gave a picture of the law governing an event as well as the connection between

dependent events. It gave later mathematicians the powers needed to picture and

articulate mathematically how, in two related phenomena, a change in one a�ects a

change in the other.

Still, scientists were divided over the question of whether nature was fully me-

chanical and fully explainable bymathematics.

But this new kind of union of geom-

etry and algebra suggested that the secrets of the universe could be fully explained

mathematically. Space and time were linked, not only through inde�nite, unreliable

geometric pictures caught by the spirit of intuition, but also through algebra.

¿e concept of a function would have been natural for examining the space-

time relationship, but that would have to �rst wait till  for Leibniz to introduce

a proto-concept and then, a er some tweaking by Johann Bernoulli and Leonard

Euler, wait again until  for Gustave-Peter Lejeune Dirichlet to introduce his

version.
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Chapter 17

A Catalogue of Symbols

William Oughtred died on Sunday, the thirteenth of June , at the age of eighty-

eight. John Aubrey tells us, “He was a little man, had black haire, and blacke eies

(with a great deal of spirit). His head was always working. He would drawe lines

and diagrams on the dust. He had burned all his papers, claiming that, ‘the world

was not worthy of them.’ He was so superb. He burned also several printed books,

andwould not stirre, till theywere consumed.”

If you examine the engraved portrait

of him by the Czech engraver Wenzel Hollar, you will �nd a thin-lipped man of late

life with an immense nose that begins at the top of his eyebrows (�gure .).

FIGURE 17.1 William Oughtred.
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He �nished the �rst edition of his Clavis mathematicae in . It went through

many editions and was a popular teaching book for a half century a er his death. In

the Clavis, we �nd the �rst use of the St. Andrews cross � as a symbol of multiplica-
tion. It had been used in medieval times as an indicator of many things other than

the product of two numbers. Until Oughtred’s Clavis, multiplication was signi�ed

by juxtaposition; ab meant a times b. ¿at was �ne, as long as the multiplicands

were symbols themselves. When it came to de�nite numbers, there was ambiguity.

Did  mean the number twenty-two, or  times ?

¿e use of juxtaposition was not a symbol; it was a concept of notation that

tempted confusion. In , Michael Stifel used the lettersM and D for multiplica-

tion and division, respectively. So did Simon Stevin in . ¿ey would write   D

sec  M ter  to indicate

xz

y
,

where sec stood in for “second unknown” and ter for “third unknown.” Once again,

theM,D, sec, and ter are not true symbols,merely abbreviations.¿ey are suscepti-

ble to conceptual confusion: which unknown is the �rst, which the second, or which

the third? Our present notation, thanks to Descartes, avoids that problem because

the letters of the alphabet are already ranked by order.

Viète wrote “A in B” to mean the product of A and B. As late as the turn of the

twentieth century, some authors were usingM to indicatemultiplication.

And even

today, there are ambiguities attributed to juxtaposition: we write 



to mean  + 


.

Perhaps that is why so many young students make so many errors when computing

with mixed fractions.

Of the more than one hundred prospective symbols and labels introduced by

Oughtred, less than a dozen are still in use. Still, anyone who can design half a dozen

symbols well enough to become standards that survived for more than three cen-

turies deserves applause.

By the seventeenth century,most rhetoricalmathematics writing shi ed to sym-

bolic writing. All sorts of new notation were introduced, some useful, some not,

some impractical, and some downright foolish. But progress continued. In the pref-
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ace to his Cursus mathematicus, published in , Pierre Hérigone wrote, “I have

invented a new method of making demonstrations, brief and intelligible, without

the use of any language.” He meant that he had introduced a complete system of

mathematical notation. Yet the only symbols of his complete system that are still in

use today are his geometrical ones, Ù (“is perpendicular to”) and∠ (“angle”).

Alfred North Whitehead once wrote, “¿ere is an old epigram which assigns

the empire of the sea to the English, of the land to the French, and of the clouds to

the Germans. Surely it was from the clouds that the Germans fetched + and −; the
ideas which these symbols have generated are much too important for the welfare

of humanity to have come from the sea or from the land.”


¿e letters p andm replaced thewords plus andminus. Popular history attributes

the signs + and − to Stifel. But there is also evidence that Stifel saw those signs

elsewhere. It has been suggested that they may have �rst appeared as chalk marks

on inventory in German warehouses to designate excess or defect from a standard

weight.


¿ey appeared in Stifel’s  edition of his Arithmetica Integra. ¿ey also ap-

peared in Johannes Widmann’s  work, Behende und hubsche Rechenung au�

allen Kau�manscha� (Nimble and Neat Calculation in All Trades). Widmann’s +,

however, was not the addition operation; rather, it meant “excess,” as in “+ is two

more thanwhatwas expected.” For a time a erward, therewere competingmarks for

the addition operation. A favorite was the abbreviation p, or p̄, the line through or

above p, to distinguish the operation from a quantity. Tartaglia preferred to use the

Greek letter ϕ (phi) to indicate addition. Symbols for minus date back to Diophan-

tus’s time, when it looked like an arrow pointing upward or downward. ¿e Latin

cross, oriented horizontally as

†

was popular, and even Descartes occasionally used

the iron cross ✠ in his Geometria, though that may have been simply added by the

printers who searched their typeface cabinets for the closest symbol they could �nd

in order to avoid carving a new letter punch. By the end of the sixteenth century

it had taken on a variety of forms from / (our division sign) to = (yes, our equal
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sign) to—and, eventually, a er experiments with other promising options, to ,

the symbol Pierre Hérigone used for minus in the  edition of his Cursus mathe-

maticus, an elementary mathematics book that has a reputation for “an almost reck-

less eagerness to introduce an exhaustive set of symbols.”

¿e straight horizontal

line symbolizing minus that we have today was the simplest, but it led to some con-

fusion because it was also used as a dash in a sentence. ¿e symbol for minus was

not standardized before the eighteenth century. Seventeenth-century manuscripts

would o en have several forms of minus on the same page.


Multiplication hadno�xed symbol for years a erOughtred introduced the sym-

bol � in . Harriot used a dot, and Descartes marked it by juxtaposition. We still

use all three notations. However, it is not clear who was responsible—writers or

printers? Later, Oughtred would use the colon (:) to denote division.¿e Arab sym-

bol for fraction used a line to divide two quantities, which varied between a − b,
a~b, and a

b . Our current symbol a / b is a combination of Oughtred’s colon and
the Arab line symbol for fraction.


Even Leibnitz, who would later create some of

the most sensible mathematics notations, used the markings � for multiplication
and � for division. I’m very surprised that they didn’t catch on. ¿ey are clever, be-

cause their re�ective duality shows division as simply the inverse of multiplication.

Handwriting was the problem; one could be confused with the other.

Our modern symbol for in�nityª was a sign that the Romans sometimes used

to indicate the number ,, hence a very large number. (See �gures . and ..)

By the end of the sixteenth century, it foolishly competed with Robert Recorde’s

horizontal lines and Xylander’s vertical lines for the best symbol for equality. ¿at

poor symbolª was tossed around to represent one thing and another until ,

when JohnWallis used it in his Arithmetica In�nitorum to indicate in�nity, yet still,

it did not catch on until , when James Bernoulli used it in his Ars Conjectandi.

By the time Hérigone’s six-volume text was complete and published in , al-

gebra was heavily symbolic. Not everyone was happy with the new form of writ-

ing mathematics. ¿ings went too far when several geometry texts were printed
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with almost no verbal explanation. Soon a er Hérigone announced his method,

the philosopher ¿omas Hobbes in  complained about the shi from verbal to

symbolic proofs in geometry:

Symbols are poor unhandsome, though necessary sca�olds of demon-

stration . . . though they shorten the writing, yet they do not make the

reader understand it sooner than if it were written in words. For the

conception of the lines and �gures . . .must proceed from words either

spoken or thought upon. So that there is a double labor of themind, one

to reduce your symbols to words, which are also symbols, another to at-

tend to the ideas which they signify. Besides, if you but consider how

none of the ancients ever used any of them in their published demon-

strations of geometry, nor in their books of arithmetic . . . you will not,

I think, for the future be so much in love with them.


And De Morgan in  wrote:

As soon as the idea of acquiring symbols and laws of combination,

without giving meaning, has become familiar, the student has the no-

tion of what I will call a “symbolic calculus:” which, with certain sym-

bols and certain laws of combination, is “symbolic algebra:” an art, not a

science; and an apparently useless art, except as it may a erwards fur-

nish the grammar of a science. ¿e pro�cient in a symbolic calculus

would naturally demand a supply of meaning.
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Chapter 18

The Symbol Master

A seemingly modest change of notation may suggest a radical shift
in viewpoint. Any new notation may ask new questions.

—Barry Mazur

Gottfried Leibniz, a man “of middle size and slim �gure, with brown hair, and small

but dark and penetrating eyes,” was the genius of symbol creation.

Alert to the ad-

vantages of proper symbols, he worked them, altered them, and tossed them when-

ever he felt the looming possibility that some poorly devised symbolmight someday

unnecessarily complicate mathematical exposition. He had studied Bombelli and

Viète, and foresaw how symbols for polynomials could not possibly continue into

algebra’s generalizations at the turn of the seventeenth century. He knew how incon-

venient symbols trapped the advancement of algebra in the � eenth and sixteenth

centuries.

By the last half of the seventeenth century,mathematicsmanuscriptswere a�ame

with symbols, largely due to Leibniz, alongwithOughtred,Hérigone, Descartes, and

Newton. Textbookwriters and lesser-knownmathematicians generated hundreds of

new symbols. Symbol creation at that time was in vogue, but with little understand-

ing of the unanticipated messes that would sooner or later corner creative thought.

As we have seen, Descartes borrowed most symbols and tweaked them to im-

provement.Oughtred introduced hundreds of potential symbolswithoutmuch con-

cern for their merit. Even when some were clearly problematical, he continued to

use them for the sake of un�appable consistency. ¿is was also true of Hèrigone.
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Leibniz, on the other hand, made symbols a priority in his attempts at clear writ-

ing. He was convinced that excellent notation was key to comprehension in all mat-

ters of human thought. “¿e true method,” he wrote, “should further us with an

Ariadne’s thread, that is to say, with a certain sensible and palpable medium, which

will guide the mind as do the lines drawn in geometry and the formulas for opera-

tions, which are laid down for the learner in arithmetic.”


In Greek mythology, Ariadne is the beautiful daughter of Minos, king of Crete,

and ¿eseus is the young boy sent from Athens to be sacri�ced to the Minotaur in

the labyrinth. Ariadne, who has fallen for ¿eseus, gives him a clew of thread to be

unwound as he enters the cave. It was the clue to the way out of the cave once the

Minotaur is slain. A er ¿eseus successfully kills the Minotaur and exits the cave,

he carries Ariadne o� to the island of Naxos and abandons her.

¿e word clew, which originally meant “ball of thread,” (and still does) became

our word clue. Apparently, Leibniz used the symbol of Ariadne’s thread to convey

the thought that the clue to mathematics and its powers of correct reasoning is in

the characteristics of its notation. His calculus notation is so perfectly matched to

the basic logical operations and processes of the subject that an ordinary student can

follow its thread through labyrinths of reasoning and exit, encouraged by assured

comprehension.

Leibniz understood symbols, their conceptual powers aswell as their limitations.

He would spend years experimenting with some—adjusting, rejecting, and corre-

sponding with everyone he knew, consulting with as many of the leading mathe-

maticians of the time who were sympathetic to his fastidiousness. He didn’t take

easily to Recorde’s equal sign, and so o en preferred to use a symbol that looks like

a stapleA for equality. I suppose it was meant to suggest a bridge between two sides.

By convention, we now say “y is a function of x” and use the notation y = f(x)
to indicate that f is a rule that assigns a unique number y to each and every value x.

Leibniz introduced a more restrictive notion in  when he wrote about tangents

to curves. For him, a function was simply an expression built from the operations

of algebra and analysis—for example, ax + b
º
a − x would qualify because it is
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built from the algebra operations of addition, multiplication, exponentiation, and

extraction of roots. ¿e function concept would go through many revisions before

, when it settled for Gustave-Peter Lejeune Dirichlet’s brilliant de�nition that

we now use everywhere in mathematics: “y is a function of x, if for every value

of x there corresponds a unique value of y.” Dirichlet’s de�nition would release all

restrictions on how the correspondence is carried out. Descartes did not have such

a free de�nition; he had to associate equations with curves and therefore investigate

how one variable moved with another as easily as points in space moved with time.

Among the more than two hundred new symbols Leibniz invented are his sym-

bols for the di�erential and integral calculus. Anyone who has studied calculus has

seen the symbol
dy
dx , the “derivative of ywith respect to x.” (See appendix A.)

Why is
dy
dx such a good symbol? Without questioning the unjusti�ed symbolic

manipulation,
dy
dx may be thought of as a fraction; one can multiply both sides of

an equation such as
dy
dx = x by dx to get dy = xdx. How convenient. It turns out

that those strange little variables dx and dy actually do follow the rules of algebra,

synthetically.

Leibniz’s symbols dx, dyof the di�erential calculus and R of the integral calcu-
lus were vastly superior to any symbols used by other mathematicians working in

calculus.¿eymade life in the calculus world far easier than it would have been had

Newton’s or Fermat’s symbols survived. Typesetters objected to the three terraces

for symbols like
dy
dx that disturbed the spacing of lines on a page.


We almost got

stuck with his alternative, which looked like y, as if the top of the d were broken

and moved le , or as if that broken o� piece was supposed to be a superscripted .

I would have thought that such a ridiculous symbol would have been a typesetter’s

nightmare. Lucky for us, it didn’t stick.


Such typesetting considerations were a strong force in symbol design. Leibniz

followed the commonpractice of using a vinculumwhen an operationwas to be per-

formed on a group of terms; the vinculum extended over those terms in the group

that were to be operated on. It too created problems for typesetters, and so Leib-

niz invented another way that didn’t widen spaces between lines on a page. So, to
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appease the typesetters, and to make the page look more attractive, he introduced

the idea of using a pair of parentheses to indicate which terms are meant to be in

the group.

Leibniz was so sure of the success of symbol reform, he bragged:

I say that when this work is completed it will be the last e�ort of the

humanmind, and all men will be happy, since they will have a tool that

will laud the intellect as the telescope perfects vision.
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Chapter 19

The Last of the Magicians

Isaac Newton, a man “rather languid in his look and manner, which did not raise

any great expectation in thosewho did not knowhim,” gave �gurative credit to those

giants on whose shoulders he stood.

Popular accounts of Newton recall his famous

line, “If I have seen further it is by standing on ye shoulders of Giants,” which goes

back to the twel h century when the French Neoplatonist philosopher Bernard of

Chartres compared his generation “to [puny] dwarfs perched on the shoulders of

giants.” Bernard pointed out that we see more and farther than our predecessors,

not because we have keener vision or greater height, but because “we are li ed up

and borne alo on their gigantic stature.”


Herbert Turnbull, the twentieth century mathematician and Newton historian,

tells this delightfully fanciful story about the young Newton:

In the country near Grantham during a great storm, which occurred

about the time of Oliver Cromwell’s death, a boy might have been seen

amusing himself in a curious fashion. Turning his back to the wind he

took a jump, which of course was a long jump.¿en he turned his face

to the wind and again took a jump, which was not nearly so long as

his �rst. ¿ese distances he carefully measured, for this was his way of

ascertaining the force of the wind. ¿e boy was Isaac Newton, and he

was one day to measure the force, if force it be, that carries a planet in

its orbit.


By this time, the telescope was already perfected and the seas around the world

explored, yet still, witches were being hanged or burned; traitors and criminals were
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routinely being beheaded in public squares—their heads parboiled for preservation

and hung from posts along busy streets—and alchemy was a hot endeavor for even

the brightest of scientists in the face of the new science of chemistry. Even Newton

was a strong alchemy experimenter.

Mathematicians of the seventeenth and eighteenth centuries were moderately

freed from the classical Greek insistence on mathematical rigor, and empowered

by their intuition and speculation about the in�nitely large and the in�nitely small.

With in�nity, new rules and new notations had to be developed. De�nitions were

nebulous, methods hazy, and logical arguments compromised by broken links. “In-

tuition,” Tobias Dantzig wrote, “had too long been held imprisoned by the severe

rigor of the Greeks. Now it broke loose, and there were no Euclids to keep its ro-

mantic �ight in check.”


Tools of the in�nite and in�nitesimal, alongwith an intuitive grasp of the contin-

uum, were being created and accepted. Imaginary numbers were in the vocabulary.

Algebra and its astute use of symbols had prepared mathematics for the calculus

revolution. Physics was boosted to a science. And Newton had—in the words of

Albert Einstein—“the greatest advance in thought that a single individual was ever

privileged to make.”


¿anks to the British historian of mathematics Derek ¿omas Whiteside and

his dedicated editing, we have almost all of Newton’s papers. When Tom (as friends

called him) �rst began to study Newton’s papers in , they were in a mess. As a

graduate student at Cambridge working on a thesis in seventeenth-century mathe-

matics history, Tom began to feel that most existing histories of mathematics were

doubtful and casual. As the story goes, he asked a librarian at Cambridge if there

were any of Newton’s manuscripts available and was quickly given eight boxes to

browse. It took Tom twenty-three years to complete his editing of the eight volumes.

From time to time, I browse volumeVII, which I seem to sharewith amouse that

has found something mysteriously delicious in the binding.

Just a page at a time,

for the seventh volume alone is �lled with enough information to spend a lifetime

in contemplation.
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Newton conceived of unknown variables as quantities �owing along a curve.

Fluents, as he called them, from the Latin �uxus (“�uid”), were very close to the

things that we now call dependent variables, our x’s, but limited by their dependence

on time.

Here is howNewton saw them in , almost forty years a er he �rst used them:

Mathematical quantities I here consider not as consisting of least possi-

ble parts, but as described by a continuous motion. Lines are described

and by describing generated not through the apposition of parts but

through the continuous motion of points; surface-areas are through

the motions of lines, solids through the motion of surface-areas, an-

gles through the rotation of sides, times through continuous �ux, and

the like in other cases.¿ese geneses take place in the reality of physical

nature and are daily witnessed in the motion of bodies.


How di�erent this notion is from Leibniz’s mathematical quantities. For Leib-

niz, a curve was �xed, static, and described by its equation, composed of an in�nite

polygon with in�nitesimal sides.

Newton, on the other hand, thought of a curve as

dynamic, a tracing of amoving particle, where any tangent line pointed in the direc-

tion the particle would �y o�, if it were not con�ned to the path. He talked of curves

as “�ows of points” that represented quantities; yet, for the calculus, they amounted

to the same things as Leibniz’s static curves.

As time changes, the quantity on the curve �ows to a new quantity along the

curve.¿e rate of change of a �uent was the “�uxion of the �uent,” a mouthful sym-

bolized as singly dotted forms ẋ, ẏ, ż—so-called pricked letters that all too rapidly

were accepted by the world as standard �uxional notation. (See appendix B for de-

tails.) Curiously, the higher derivatives were denoted by multiple dots above the

variables, so y...
.....
would stand for the eighth �uxion of the �uent y, which meant the

�uxion of the �uxion of . . . (eight times) of the �uent y; it was as if the old story of

exponential indexing had to be retold before anyone came up with the idea of writ-

ing something like


y. Our modern Leibnizian notation for the same thing is dy,

a far more satisfying representation. Just imagine having to read ddddddddy for

the eighth di�erential. ¿ere may not have been much need for such a high-order
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derivative in Leibniz’s time, but eventuallymore complicated termswould inevitably

appear: Nightmares such as ddddddddxdddddydddddzwould eventually arise.

Fortunately, Leibniz’s notation has it as: dx ċ dy ċ dz.
A further problem was that, by the restrictive notation, �uxions required a con-

text to clarify the conceptual nature of the independent variable, which was gen-

erally the time variable t, but not necessarily. ¿e �uxion of x was understood to

be relative to the time variable, and so really nothing more than the velocity of x;

in Leibniz’s notation, that would be
dx
dt . In Newton’s notation, it would be ẋ, and in

modern language it is: the derivative of x with respect to t.

According to Newton, the fundamental task of calculus was another mouthful

of �ues: to �nd the �uxions of given �uents and the �uents of given �uxions. How-

ever, Newton had several approaches throughout his life and was also an advocate

of in�nitesimals.


As an example, take y− x = ; we could substitute x + ẋo for x, and y+ ẏo for
y. (See appendix B for how Newton found the �uxion of xn.) ¿e o is the letter “o,”

which is meant to signify a very, very small quantity, but not zero. In fact, it is meant

to be what Newton would call an in�nitely small quantity, whatever that was meant

to be. With that understanding the equation becomes

y+ ẏo− (x + ẋo) = .

And equivalently,

y+ ẏo− x − xẋo− ẋo = .

Since y − x = , this last equation becomes ẏo − xẋo = ẋo = . Newton

would argue that o is small, but not zero, and therefore division by o is perfectly valid.

Dividing by o, the last equation becomes ẏ−xẋ−ẋo = .Newtonwould now argue
something that could be questionable: because the o ismeant to be an in�nitely small

quantity, the terms multiplied by omust be insigni�cant compared to the ones that

are not multiplied by o. ¿erefore, he could drop the term ẋo, so the last equation

becomes ẏ − xẋ = .

Dividing by o when o is not zero is �ne, perfectly valid.

However, when it came to arguing that o is not zero, but in�nitesimal (whatever that
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means), it le a few great questions to hang in the air for the philosopher George

Berkeley, the Anglican bishop of Cloyne in County Cork, Ireland:

It must, indeed, be acknowledged, that he used Fluxions, like the Scaf-

fold of a building, as things to be laid aside or got rid of, as soon as

�nite Lines were found proportional to them. But then these �nite Ex-

ponents are found by the help of Fluxions. . . .And what are these same

evanescent Increments? ¿ey are neither �nite Quantities nor Quanti-

ties in�nitely small, nor yet nothing. May we not call them the Ghosts

of departed Quantities?


Newton, and for thatmatter Leibniz, too, wanted it bothways, to have something

to call in�nitesimal: something that was not zero to divide by, and yet sort of zero

to ignore—“ghosts of departed quantities.”

In Berkeley’s view, Newton’s calculus failed to conform to intuitive notions of

continuity. ¿e subtitle of his essay alone gives his point of view: Or a Discourse

Addressed to an In�del Mathematician. Wherein It Is Examined Whether the Object,

Principles, and Inferences of the Modern Analysis [meaning calculus] Are More Dis-

tinctly Conceived, or More Evidently Deduced, than Religious Mysteries and Points of

Faith.

¿e real argument was over the justi�cation of Newton’s ambiguous meaning

of limits of ratios where both numerator and denominator tend toward zero, a �ne

notion that ignored the appreciation of the subtle nuances and di�culties of in�nity

and continuity. Newton was not thinking of those ratios as true ratios, but rather

as limits, just as we think of them today. To Berkeley, it seemed that Newton was

dividing zero by zero, meaningless nonsense.

¿e bishop’s complaint was fair; intuition is �ne for people like Euler, Fermat,

Newton, and Leibniz, mathematicians with good intuition. ¿e danger was that

something slyly anarchic could slip through the front gates of calculus disguised as

the legitimate heir to a proven theorem. By the end of the eighteenth century, prac-

tical applications of calculus and coordinate geometry were exploding, improving

human lives and knowledge of the real world without regard to the inconsistencies

sneaking through the gates of reason. ¿e invention of calculus advanced archi-
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tecture, astronomy, artillery, carpentry, cartography, celestial mechanics, chemistry,

civil engineering, clock design, hydrodynamics, hydrostatics, magnetism, materials

science, music, navigation, optics, pneumatics, ship construction, and thermody-

namics—and this list is by no means exhaustive.

By the time of Newton’s death in , eyeglasses and newspapers were readily

available and a�ordable. Enormous political changes had enveloped Europe; small

ducal states of central Europe had begun condensing through wars and mergers

to become kingdoms, while neighbors shaved large regions from Poland and the

Ottoman Empire. Populations of cities remained small—London had fewer than

,, Paris fewer than ,—andwolves still roamed freely outside the cities.

Brightly lit co�eehouses and luxurious surroundings were everywhere in the big

cities of Europe as well as in university towns, where newspapers were sold each af-

ternoon, and streets were lit at night so people could walk about, discussing politics,

philosophy, and the latest scienti�c discoveries. Europe was seeing a fresh style of

life. Co�eehouses were not just places of gossip and news, but places where students

and faculty could talk about the books they read, discuss poetry and plays, collect

mail, or hear the latest scienti�c reports. Scienti�c academies and societies were es-

tablished with funds for publishing periodicals and money for developing research

tools and costly measuring instruments.

In the � y years following Newton’s death, Denis Diderot would complete sev-

enteen large volumes of the �rst encyclopedia, Edward Gibbon would shock the

world with his Decline and Fall of the Roman Empire, Jean-Jacques Rousseau would

write¿e Social Contract, James Watt would build the steam engine, Mozart would

have written serenades and symphonies, Bach would die, and Beethoven would be

born.

¿ough slave trading increased and wars involving countries all over Europe

continued over colonies, trade, and sea power, science, art, literature, and practical

inventions were about to explode in the Age of Enlightenment. A middle class was

becoming informed and beginning to think, not only about politics, but also about

science and literature.
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Global information highways were in place to spread news of calamity, intellec-

tual fashions, and scienti�c discovery. ¿e motions of human culture were growing

dramatically more sophisticated and would soon lead to greater discoveries, but the

motions of the planet, not to mention cannonballs and arrows, seemed to have been

essentially determined by calculus.

It was an era witnessing steamy horizons of sci-

ence, when textbook authors were searching for new ways to express mathematics

to an increasing population of university students.
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Part 3

The Power of Symbols

Curious readers would like to know the deeper secrets lying beneath the sudden

explosion of symbol use and the metamorphosis that brought symbols to us in the

forms that they now have.¿ere are those special moments that seem obvious to us

now, but far-reaching to a thinker in the past.
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Chapter 20

Rendezvous in the Mind

By relieving the brain of all unnecessary work, a good notation sets
it free to concentrate on more advanced problems . . .

—A. N. Whitehead

Before the sixteenth century, almost anyone with enough determination could com-

prehend the elements of almost any mathematical writing. With quill and parch-

ment, a quiet room, an open windowwith refreshing breezes, enough tallow to keep

candles burning through the night, and an inordinate amount of mind-contorting

labor, it was still possible to write mathematics in natural language words. Mathe-

matics was readable to anyonewhowished to parse its language, its springs, its gears,

and its logic.

“Jabberwocky,” the¿rough the Looking Glass verse that begins “Twas bryllyg,

and the slythy toves” gives an impression of what sensible language sounds like to

the uninitiated. It is close to what the infant hears at the stage of trying to make

sense of the sounds around him or her. Hear it in connection with “Did gyre and

gymble in ye wabe / All mimsy were ye borogoves; / And ye mome raths outgrabe,”

and something faintly more sensible might come. ¿e Jabberwocky is what we get

when we �rst encounter mathematics—or anything—we don’t understand.

By the eighteenth century, the language of mathematics was far too symbolized

for people to read without a great deal of preliminary tutoring. It was not so much

that the quantity of symbols had grown. Quantity was not the problem; rather, it

was that the novice had to learn a new visual language while trying to comprehend

Rendezvous in the Mind 179



“Mazur” — // — : — page  — #

new material. Understanding such a language either took a very special expertise

or enormously intense work persistence.¿e language was visual, but the meanings

were concealed. Symbols packed in notational sentences provided packets of infor-

mation whose contents were known only to those who had the time and talent, or

the patience to open those packets.

“It’s Greek to me,” is the colloquial retort we o en hear when something is not

understood. Greek is not a particularly di�cult language. Greek babies learn it as

easily as American babies learn English. So why is Greek singled out as an expres-

sion of incomprehension?Most likely it’s because Greek is not written in those Latin

letters that are so familiar to westerners. ¿at unfamiliarity with Greek letters asso-

ciates itself with a self-commending ignorance.

Mathematical symbols are meant to help us understand.¿ey are meant to help

us follow a mathematical demonstration, to make things easy, to charitably give us

simpli�cation so that we may have more or less pictorial presentations of what is

going on as we read mathematics. But it is true that, like the technical terms of any

profession that are beyond our understanding, they become frustratingly Greek—in

part because they o en are Greek.

Alfred North Whitehead dares us:

If anyone doubts the utility of symbols, let himwrite out in full, without

any symbols whatever, the whole meaning of the following equations

which represent some of the fundamental laws of algebra:

x + y = y+ x
(x + y) + z = x + (y+ z)

x � y = y� x
(x � y) � z = x � (y� z)

x � (y+ z) = (x � y) + (x � z)
. . . ¿e example shows that by the aid of symbolism, we can make the

transitions in reasoning almost mechanically by the eye, which other-

wise would call into play the higher faculties of the brain.


Although ¿omas Hobbes called symbols “necessary sca�olds of demonstra-

tion,” he also wrote that “they do not make the reader understand [the symbolized]

any sooner than if it were written in words.”
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For the conception of the lines and �gures. . .must proceed from words

either spoken or thought upon. So that there is a double labour of the

mind, one to reduce your symbols to words, which are also symbols,

another to attend to the ideas which they signify.


In natural language, even the most carefully chosen words drag along concealed

meanings that have the power to manipulate reasoning. We learn some words from

dictionaries, which givemeanings throughwordswe already knowor throughwords

we can look up, in turn. We learned (and learn) other words mostly through adjust-

ments of vague meanings, judging how well competing meanings �t each context of

use. What is the di�erence between a chair and a stool, a cup and a mug, a door and

a portal?

Symbols ofmathematics too sometimes have concealedmeanings, but their pur-

pose is to bring along pure thought. It is possible to learn what a mathematical sym-

bol stands for by context. We learn the meanings of mathematical symbols mostly

from their de�nitions: Mostly, because in formal mathematics not everyone easily

grasps de�nitions that are not linked to the familiar properties of experience. In a

landmark paper, David Tall of the University of Warwick and Schlomo Vinner of

Hebrew University point out that many concepts of pending de�nition are already

in the mind in some cognitive structure of personal images before any formal de�-

nition is evoked.


Symbolic language surely promotes its own concealedmeanings that come from

imaginative glimpses into the subconscious, but the best symbols are those that pin-

point meaning and yet permit themind to quickly roam its databank of similar con-

textual patterns to compare, to transmit, and to creatively linkwhat is unknownwith

what is known.

Mathematics uses symbols to express its content with precision. In his notable

classic On Growth and Form, D’Arcy ¿ompson asked how we could tell the dif-

ference between the shapes of a rainbow and an arc of water shot from a hose.


¿eymay look the same; both may even have all the colors of the rainbow. Both are

made from droplets of water. In ordinary language, youmight say they are smoothly

curved arcs that look similar.
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But looking at those curves through the lens of symbols, they are very di�erent

shapes. ¿e coordinates (x, y) of a point on the rainbow must �t the equation y =
º
a − x, whereas the coordinates (x, y) of a point on the arc of water must �t the

equation y = ax + bx + c, where a, b, and c are �xed numbers that determine the
height and width of the curves between their endpoints. One is a semicircle, the

other a parabola. No matter how much you tinker with the parameters a, b, and c,

the two curves can never be superimposed on each other to become one curve.


With the right and proper symbols, we focus on the patterns, the symmetries,

the similarities, the di�erences that might appear rather dim and blurred through

the lens of natural language.

Take the equation x + y = xy+ . Hmm. . . if only that term xywere not there,

we would have a circle of radius , which is governed by the simple equation x +
y = . But the term xy is there, so how does it change the circle? It entwines the

two variables x and y in such a way that they cannot be separated without some

transformation to simplify the equation. However, the symmetry of x and y in the

original equation gives a clue to the geometry of the curve. If you swap x and y, you

get exactly the same equation. Aha!¿at can only mean that the curve is symmetric

with respect to the line y = x. Indeed, by rotating the axes clockwise through a -
degree angle, and labeling the new axes s and t, the equation magically becomes

s + t = . ¿is new form has no st term; s and t are not entwined together by

multiplication. Graph this nice equation in s and t coordinates, and the picture is

an ellipse centered at (,) and symmetric with respect to the s and t axes.
Just as the symmetric formof the equation x+y = r cries out circle! circle!,

so too does the term xy, a multiplicative adhesion of x to y, immediately scream

to the le hemisphere of the cerebral cortex, rotation! rotation!¿at -degree

rotation disentangles the variables x and y by making the xy term disappear.

Symmetry in an equation alwaysmeans some kind of symmetry in the geometry

of the curve described by that equation. And so it is for our equation x+y = xy+.
¿e curve is an ellipse that is symmetric with the two diagonal lines that make a -

degree angle with the horizontal.
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¿e mind might not have been quick enough to say that the curve is an ellipse,

but the equation was quite fast in telling us that, whatever it was, it had to have

symmetry about the line y = x, because a swapping of x with y could not have

changed the curve. All it could have done was to change the names of the variables.

¿e wires connecting algebra with geometry are unbreakable, yet almost invisi-

ble. ¿ey make the algebraic process visual. ¿ey give us the patterns, associations,

similarities, and strange rendezvous in the mind that are veiled by words alone. Ac-

cept Whitehead’s dare and try to see the geometry of x + y = xy+  by writing
out in full, without any symbols whatever, the equation’s whole meaning. It can be

done, but not without steaming the blood rushes in the brain.

Symmetry takes many forms.¿at old quipping question that asks for “the color

of George Washington’s white horse” is really inviting us to examine the question

itself for the answer.Whenwe ask for the square of the number whose square is  we

are sort of posing a re�ective self-answering question. Symbolically, the question is

the answer and the answer the question: (
º
) = . On the surface, this tautological

identity does not ask for new information, nor does it ask for any information. But

when we see it symbolically generalized for all positive numbers, as (
º
x) = x, our

creative talents are stimulated to similar questions: is the identity ( 
º
x) = x true?

What about ( 
º
x) = x? And what about ( n

º
x)n = x, for any positive integer n?

From this, our talents might leap to a new understanding of the symbol
n
º
x.

If xn stands for x multiplied by itself n times, and if (xn)m = xn�m for n and m

positive integers, then wouldn’t it make sense to let the symbol x


n represent
n
º
x,

“the number whose nth power is x,” assuming that such a thing is actually a number.

In that way, the algebra con�rms what we already know, but it also extends itself to

include an arithmetic of exponents. We would have

(x 

n )n = x 

n�n = x = x.

From there, it is a short hop to knowing that x
m
n should stand for ( n

º
x)m, when n

and m are positive whole numbers, and a short leap to a de�nition that extends n

andm to all whole numbers. And from here, we see how symbolism and de�nition
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build fromone smart idea to the next, using de�nition, reason, and pattern as guides

to more powerful generalities.

¿is wonderful symbolic form of creating powers and extracting roots provides

a grammar for the arithmetic of exponents. Taking powers and extracting roots are

inverse operations because they are de�ned that way. Addition and subtraction are

inverse operations; add a number and subtract that same number and you are back

where you started. ¿e same works for multiplication and division. In general, a

mathematical operation is most useful if there is an inverse procedure that reverses

that operation. Such inverse operations are critical to solving equations. For exam-

ple, to solve the equation x +  = , we subtract  from both sides to get x = . To
solve the equation x = , we take the square root of both sides to get x = �.

Numbers have advanced far from those early beginnings of counting that gave

us ten �ngers, two eyes, and one nose.¿ey no longer refer exclusively to the things

we see or to the things we need to count. Modern mathematics is interested in de�-

nition, reason, and patterns that appear to us symbolically.¿e de�nitions can even

contradict everyday words and intuitive concepts, especially intuitive physical con-

cepts, as long as mathematical rules and symbolic grammar are obeyed. ¿ey open

the gates to logical worlds that are external to visible nature. Nowhere is this more

obvious than when you begin to conceive what lies beyond the rational numbers.

Only puremathematical language, with its highly developed symbolic sense, can see

what lies beyond.

At one time, the notion that there could be a number whose square is negative

seemed to be beyond the beyond.What could be the use of such an imaginary thing

as
º
−? Use the correct symbolic grammar to solve the equation x − x −  = ,

and you �nd two reasonable solutions,  +
º
 and  −

º
. But what pops out when

you try that same symbolic grammar on the quadratic equation x−x+ = ? Two
strange solutions, +

º
− and −

º
−. Take any one of these solutions, square it and

subtract it from twice itself and add . ¿e result is zero. Separately, these solutions

may seem useless, but add them together and you get, simply, . In other words, the

strange term
º
− is annihilated in the process of substituting it in the equation.
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If you were just coming from the early sixteenth century reading this chapter,

you might be thinking—as you should be—that there is already something suspi-

cious about adding +
º
− to −

º
− to get . Such a sum implies that

º
−−

º
− = .

Is that true? A modern answer would be: “Sure, x − x must equal zero, no matter
what x might be.” Surely that is true for numbers that obey the usual rules of arith-

metic. But so far, all we know is that
º
− is just a symbol for something that came

about as a result of symbolic algebra performed on a quadratic equation. We don’t

really know anything about
º
− other than the fact that it stands for a mysterious

something with a de�nitive property that says, “if you multiply it by itself,” whatever

that could mean, “you get the negative number −.”
You—stranger from the past—might be thinking that  +

º
− and  −

º
− are

nonsense solutions because there is no other obvious indication that there are real-

world phenomena leading back to a quadratic equation such as x − x +  =  (in
present-day notation). If you came from the end of the sixteenth century and knew

something about graphing quadratic equations in a rectangular coordinate system,

you might say that the graph is a parabola whose lowest point is at (,), a point
that is two units above the x-axis. ¿ere is no x for which the value of y is zero.

But look beyond. Scrap rectangular coordinates and consider something di�er-

ent.What if we now admit to our number system all numbers of the form a+b
º
−,

where a and b can be any numbers that were already admitted to the club of real

numbers? You may think that such an admission is silly; however, symbolically,

whatever these things are, they act perfectly well within the grammar and syntax of

our ordinary numbers.¿ey seem to obey all the laws of ordinary numbers: add two,

subtract two, multiply two, divide two, and you get another of the form a + b
º
−.

Believe that all the usual laws apply, and do it! But why is it that—unlike normal

numbers such as , , ,. . . , as well as slightly stranger numbers /, π, or
º
—you

have no clear image of what this number represents other than the image of the

symbol
º
− that you are starting to get used to.

You may think that
º
− is already a symbol that represents the square root of

minus one, but it was not constructed for that purpose. It emerged from the conse-
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quence of algebraic manipulations in trying to solve equations. It may seem as if the

negative number − got caught under the square root sign accidentally in the pro-
cess. But, with a bit of arithmetical sleight of hand to avoid details, notice that any

number of the form a+
º
−c, with a and c real numbers, can be written as a+b

º
−,

with a and b real numbers. So
º
− takes on a virtual importance, and hence war-

rants a special symbol.We denote it by the letter i, inspired by the word “imaginary.”

Forms represented as bi, where b represents a real number, are called “imaginary

numbers,” and forms represented as a+bi, where a and b are real numbers, are called
“complex numbers,” complex in the sense of being a mixture of real and imaginary.

(Unfortunately, both words—“imaginary” and “complex”—are solidly anchored in

the mathematical vocabulary. Unfortunately, because they are the names of classes

of numbers that are neither imaginary nor complex.)

Itmay come as a surprise that the symbol i (even though it is just an abbreviation

of the word “imaginary”) has a marked advantage over
º
−. In reading mathemat-

ics, the di�erence between a + b
º
− and a + bi is the di�erence between eating a

strawberry while holding your nose, missing the luscious taste, and eating a straw-

berry while breathing normally.

Numbers? Why are we calling these things numbers? We once thought a num-

ber to be a count of something—�ngers, toes, sheep, days, drachma, eyes, ears, and

noses. ¿en we thought a number was a measure of something, which could be

fractional or even irrational. But what do these so-called complex numbers count

or measure? Perhaps we should call them “pairs of numbers,” but even that would

not satisfy our usual sense of what a number is.¿ey are not even pairs of numbers,

for there is that sticky thing attached to the second number of the pair.


We have images of the integers as a line. Each integer positioned as if it were

measuring a unit distance from , positive integers to the right, negative to the le .

¿e same goes for rational numbers and real numbers that can be written as possibly

never-ending decimals.¿ere is something in the cumulative consciousness of civi-

lization that begs for amental picture of numbers, even if that picture is fuzzy. But to

visualize complex numbers requires something more inventive. (See appendix D.)

186 Chapter 20



“Mazur” — // — : — page  — #

At one time, the concept of number was represented as a simple adjective: “ten”

�ngers. Much, much later it became a noun: “ten,” without regard to speci�c unit-

nouns. But ever since the mid-sixteenth century, when symbols �ooded into the

language of mathematics, the de�nition of number has conceptually broadened so

as to include an act or a mode of being. We now have i, a number that is an action:

the act of a rotation of  degrees.

About those complex numbers: Way back when Cardano’s formula for solu-

tions to cubic polynomials led to the idea that imaginary numbers—in spite of their

regrettable name—might be useful, even the most respected mathematicians and

philosophers were bewildered by their mysteries. Partly to blame was their appar-

ent inapplicability. If roses by any other name would smell as sweet, then
º
− called

anything other than “imaginary” would be just as real. It is an unfortunate name,

imaginary or not.

Negative numbers came from playing with equations such as x + a = b. Imagi-
nary numbers came from playing with equations such as x + a = b. So the sense or
nonsense of the equation rests on the relationship of the symbols a and b and the

legitimacy of square roots of negative numbers. When a is greater than b, there is a

problem: a number times itself would end up negative. Suchwould be nonsense, un-

less we admit square roots of negative numbers to the number club. To make sense

of this nonsense, wemust revisit the fundamental question ofmathematics—what is

number?—so that the solutions to all equations of the form x+a = b havemeaning.
Wewant

º
b − a to havemeaning—always—as long as a and b are rational numbers.

Perhaps, in some mysterious way, there is some legitimacy to this nonsensical

symbol i, something more real than imaginary. Perhaps those strange, meaningless

symbols can be used in some way to lead to solutions of problems and yield valid

results.

Whitehead once quipped:

A symbol which has not been properly de�ned is not a symbol at all. It

is merely a blot of ink on paper which has an easily recognized shape.

Nothing can be proved by a succession of blot, except the existence of

a bad pen or a careless writer.
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A complex number x + iy turns out to be just a pair of real numbers (x, y) that
must obey a list of easy rules and is spectacularly useful for solving problems about

�uid �ow, heat conduction, gravity, and almost the whole of mathematical physics.

¿e pictorial representation of the rules for adding andmultiplying pairs of complex

numbers is surprisingly easy, and meaning for such operations are also surprisingly

simple.

One of the wonderful things aboutmathematics is that—by its best symbols—its

progression expands its vision. Multiply any real number by −, and you have made
every positive number negative and every negative number positive. Looking at the

real number line graphically, you have spun the whole number line  degrees from

its original display. Numbers that were growing toward the right become numbers

that are growing toward the le . Multiply any complex number by i, and you have

rotated it counterclockwise  degrees in the two-dimensional plane.

When you try to construct a three-dimensional number system based on triples

(x, y, z), you inevitably end up with a system of numbers with nasty things called

“zero divisors” (nonzero numbers whose products are zero) thatmess up the normal

algebra used to solve equations. So skip three-dimensional space and go to four, the

next dimensionwhere it is possible to form a number system obeying the associative

law—where aċ(bċc) = (aċb)ċc—that has no zero divisors.¿ere is a price, of course:

we must give up the commutative law—a ċ b is no longer equal to b ċ a, as it was for
all the numbers we’ve encountered so far.

¿e “quaternions,” as the nineteenth-century IrishmathematicianWilliamRow-

and Hamilton called them, belong to a new number system in four dimensions that

contain the complex numbers and a multiplication system that obey all the laws

of algebra, except the commutative law. Hamilton discovered them on a walk in

Dublin with his wife. “I then and there felt the galvanic circuit of thought close,” he

wrote, “and the sparks which fell from it were the fundamental equations between

i, j, k; exactly such as I have used them ever since.”

(See appendix E for more on

quaternions.) Reconsider Whitehead’s dare: try writing out the whole meaning of

the fundamental equations of the quaternions without any symbols whatever.
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Chapter 21

The Good Symbol

¿e �rst appearance of the symbol π came in . William Jones (how many of us

have ever heard of him?) used the Greek letter π to denote the ratio of the circum-

ference to the diameter of a circle.

How simple. “No lengthy introduction prepares

the reader for the bringing upon the stage ofmathematical history this distinguished

visitor from the �eld of Greek letters. It simply came, unheralded.”

But for the next

thirty years, it was not used again until Euler used it in his correspondence with

Stirling.

We could accuse π of not being a real symbol. It is, a er all, just the �rst letter of

the word “periphery.”

True, but like i, it evokes notions that might not surface with

symbols carrying too much baggage. Certain questions such as “what is ii?” might

pass our thoughts without a contemplating pause. Puremathematics asks such ques-

tions because it is not just engagedwith symbolic de�nitions and rules, but with how

far the boundaries can be pushed by asking questions that everyday words could ig-

nore. You might think that ii makes no sense, that it’s nothing at all, or maybe a

complex number. Surprise: it turns out to be a real number!


It seems that number has a far broader meaning than it once had when we �rst

started counting sheep in the meadow.We have extended the idea to include collec-

tions of conceptual things that include the usual members of the number family that

still obey the rules of numerical operations. Like many of the words we use, number

has a far broader meaning than it once had.
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Ernst Mach mused:

¿ink only of the so-called imaginary quantities with which mathe-

maticians long operated, and from which they even obtained impor-

tant results ere they were in a position to assign to them a perfectly

determinate and withal visualizable meaning.


It is not the job of mathematics to stick with earthly relevance. Yet the world

seems to eventually pick up on mathematics abstractions and generalizations and

apply them to something relevant to Earth’s existence.Almost awhole century passed

with mathematicians using imaginary exponents while a new concept germinated.

And then, from the symbol i that once stood for that one-time peculiar abhorrence
º
−, there emerged a new notion: that magnitude, direction, rotation may be em-

bodied in the symbol itself. It is as if symbols have some intelligence of their own.

What is good mathematical notation? As it is with most excellent questions, the

answer is not so simple. Whatever a symbol is, it must function as a revealer of

patterns, a pointer to generalizations. It must have an intelligence of its own, or at

least it must support our own intelligence and help us think for ourselves. It must

be an indicator of things to come, a signaler of fresh thoughts, a clari�er of puzzling

concepts, a help to overcome the mental fatigues of confusion that would otherwise

come from rhetoric or shorthand. It must be a guide to our own intelligence. Here

is Mach again:

In algebraweperform, as far as possible, all numerical operationswhich

are identical in form once for all, so that only a remnant of work is le 

for the individual case. ¿e use of the signs of algebra and analysis,

which are merely symbols of operations to be performed, is due to the

observation that we can materially disburden the mind in this way and

spare its powers for more important and more di�cult duties, by im-

posing all mechanical operations upon the hand.

¿e student of mathematics o en �nds it hard to throw o� the un-

comfortable feeling that his science, in the person of his pencil, sur-

passes him in intelligence—an impression which the great Euler con-

fessed he o en could not get rid of.


A single symbol can tell a whole story.
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¿ere was no single moment when xn was �rst used to indicate the nth power

of x. A half century separated Bombelli’s . (


, from Descartes’s xn. It may seem like

a clear-cut idea to us, but the idea of symbolically labeling the number of copies

of x in the product was a huge step forward. ¿e reader no longer had to count the

number of x’s, which paused contemplation, interrupted the smoothness of reading,

and hindered any broad insights of associations and similarities that could extend

ideas. ¿e laws xnxm = xn+m and (xn)m = xnm, where n and m are integers, were

almost immediately suggested from the indexing symbol . Not far behind was the

idea to let x


 denote
º
x, inspired by extending the law xnxm = xn+m to include

fractions, so x


 x


 = x.
Further speculation on what nx might be would surely have inspired questions

such as what x might be for a given y in an equation such as y = x. Answer that
and we would have a way of performing multiplication by addition. But Napier, the

inventor of logarithms, already knew the answer long before mathematics had any

symbols at all!

Symbols acquire meanings that they originally didn’t have. But symbolic rep-

resentation has, likewise, the disadvantage that the object represented is very easily

lost sight of, and that operations are continuedwith the symbols to which frequently

no object whatever corresponds.

Ernst Mach once again:

A symbolical representation of a method of calculation has the same

signi�cance for a mathematician as a model or a visualisable working

hypothesis has for a physicist. ¿e symbol, the model, the hypothesis

runs parallel with the thing to be represented. But the parallelism may

extend farther, or be extended farther, than was originally intended on

the adoption of the symbol. Since the thing represented and the device

representing are a er all di�erent, what would be concealed in the one

is apparent in the other.
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Chapter 22

Invisible Gorillas

. . . Hark! the rushing snow!
The sun-awakened avalanche! whose mass,
Thrice sifted by the storm, had gathered there
Flake after flake, in heaven-defying minds
As thought by thought is piled, till some great truth
Is loosened, and the nations echo round,
Shaken to their roots, as do the mountains now.

—Shelley, Prometheus Bound1

A frog easily catches insects in motion, but will not bother a most appetizing fat

house�y sitting directly in front of him. A �y could safely crawl onto the frog’s back

without any worry of being gobbled up. Place a plate of dead �ies in front of the frog

and he will sit there like a stone garden ornament. ¿e poor frog would starve to

death rather than attack something that is not moving.

¿e pond in my yard is �lled with frogs of all sizes. I see one, but he does not

see me—not really. His eyes don’t move, but if his body moves he reorients himself,

rotating the world with him. Pluck a long reed of grass from the banks and very

slowly move the tip toward the frog’s eyes. Keep it steady, and the frog will just sit

there, as if staring across the pond.Wiggle the end of the reed, and a tongue will dart

from the easily fooled frog to catch the reed. But should an insect pass his unblinking

visual �eld, he will snatch it as quickly as a bullet leaves a . Magnum.

“And should he miss?” I once asked Jerry Lettvin, the neurobiologist who wrote

the seminal paper on what the frog really sees.

“Well,” Jerry said, “he will remem-

ber that moving thing as long as it stays within his �eld of vision and he is not

distracted.”
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¿e frog sees movement. He is able to catch �ies so well because there are no

other obstructive confusions in his visual �eld. Humans are okay at catching �ies

when the background is white or a solid color, but the moment the �y moves into a

�eld with confusing background, we lose track of its movement.

Symbols provide a blank background on which we may contemplate unadulter-

ated meaning. ¿ey help us see, as if through frogs’ eyes, to distinguish ingredients:

the essentials from the disposable, the elementals from the jumbles.

You put the equation x − ab =  before me, and I immediately know that x =
�
º
ab. But I would also see a square and a rectangle that are aching to be compared.

I see a little poser wiggling in before the whiteboard of my mind: “What is the side

of a square that has the same area as the rectangle of length a and width b?”

Every mathematician I know would see the same little poser. It would be like

putting the musical notation

Contrabasso

Violoncello

Viola

Violino II

Violino I

in C, G
Timpani

in C
Trombe 1, 2

in E
Corni 1, 2

Fagotti 1, 2

zu 2

in B
Clarinetti 1, 2

zu 2

Oboi 1, 2

Flauti 1, 2

Allegro con brio.  (  = 108)

Symphony No. 5

I

 2008 Center for Computer Assisted Research in the Humanities (CCARH)
http://www.musedata.org/beethoven/sym-5
Beethoven: Symphony No. 5 in C minor, Op. 67, Mvmt. 1: Allegro con brio

7 Aug 2008

page 2

before the eyes of a musician or, for that matter, anyone who can read music. ¿e

mind would hear the four-note “short-short-short-long” motif played twice, and

know it to be the opening motif of Beethoven’s Symphony No.  in C minor, Op. .

My little poser would conjure up several cerebral images. ¿ere might be a geo-

metric one, where two �gures, a square and rectangle, are compared in such a way

that I could recon�gure the rectangle to make it into a square. Since a and b do not

have speci�c values, the exercise can only be one of symbolic manipulation. I would

resort to the rules of algebra learned in school: add ab to both sides and extract the

root of ab to get x = �
º
ab.

Meanwhile, my mind would probably rush though hundreds of speci�c cases

almost at once, searching for connections to all the other times such an equation had

been seen, where a = �− ,−,−,, ,,,,
º
,π�, and the same with b. ¿ose

particular cases would give me �xed images of speci�c rectangles. When a =  and
b = , and the multiplication is performed, I would recognize the perfect square

whose area is  square units and whose side is  units long. But if a =  and b = ,
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I would be looking for a square whose area is  square units, at a slight loss over

what the side of such a square will be.

At that point, my mind must go into a secondary mode. I must think in terms

of extracting roots and all the information I have accumulated over the years about

extracting roots. Ugh! What is the square root of ? It’s a tough one, if I have not

recentlymade the calculation to �nd it. I would recall that it is less than . andmore

than, say, .. But then I would tell myself that I’m not really interested in what it

is exactly, and that
º
 is either good enough or that it is

º
 �  � , which is also

good enough.

In the early nineteenth century, the German naturalist Gotthilf von Schubert

wrote the most in�uential book on dreams, a book that is reputed to have in�u-

enced Freud and Jung. Von Schubert observed that we dream in a traumbildsprache

(“dream visual language”), “a higher kind of algebra,” not in a verbal language. ¿e

pictureswe see are the symbols ofmyths and rituals of peoples throughout theworld.

But the pictures are mostly silent. Except for the few occasions when there is verbal

activity, the sounds spoken by the dreamer appear as mu�ed garbling to anyone

who is awake and listening. Even nightmare screams are silent in dreams; the dis-

tressed dreamer struggles to get out the faintest noise.

In the s, the American psychologists Calvin Hall and Vernon Nordby be-

gan collecting dreams.Over the next thirty years, they compiled the extracts ofmore

than , dreams from people of all ages and from all around the world. By a clas-

si�cation scheme, they discovered that dreams of random groups scattered around

the world are more similar than di�erent.

Why do the themes of dreams recur in so many di�erent cultures around the

world? Hall and Nordby called them “typical dreams”—“¿ese typical dreams, as

we shall call them, are experienced by virtually every dreamer.¿ese typical dreams

express the shared concerns, preoccupations and interests of all dreamers.¿eymay

be said to constitute the universal constants of the human psyche.”


Why? ¿e likely answer is that picture language predates verbal language, and

that dreams are a part of the collective unconscious—Jung’s theory. Pictures in the
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mind once gave humans a powerful protolanguage for survival. ¿ere was a time

when humans thought and communicated with noises no more sophisticated than a

hound’s yelp.¿e �rst verbal language was likely grunting or need-indicators vocal-

ized by a single vowel.¿e bird does not think by whistling to itself. It goes on about

its business of building nests by model images of the representative nest, without

any sure idea of what it is doing, and yet it builds its nest from the instructions of

its instinctive perception coming from its central nervous system. It goes about its

daily business with a species-speci�c sense of behavior patterns.

¿e evolution of our capacity to make sense of visual meanings happened long

before we had any communicating tool that we would now call language. So we

should be inclined to expect that images be more at the core of intuitive cognition

than words. We may have silent chats with ourselves, have dialogues with the self,

but the images we see are more primal, and don’t require words for us to understand

what we see. We may verbally translate our images, but such translations are not

necessary for thought.

Images and soundsmake the invisible sensory expressions of thought visible and

the inaudible sensory expressions of thought audible. For sensory thought to be at all

useful, there must be some transformational code that brings some image or sound

into consciousness. Images are primal.Writtenwords andmathematical symbols are

invented. A walk in the woods takes in a great many images—the random stones,

the fallen branches, the wet leaves at the edge of the trickling stream, the green grass,

the blue sky peeping through the treetops.¿ese are not verbalized. Rather they be-

come images stored into the gazing thoughts compartment who-knows-where in

the brain. ¿ey get confused and synthesized with other experiences through com-

parison and association with similar memories of real events and mental images.

It may be true that symbols in mathematics are distinct from symbols that come

from experiential senses that are apparent in dreams, myths, rituals, and poetry, as

the American philosopher Suzanne Langer suggested in her  �nal and sem-

inal work, An Essay on Human Feeling. However, the moment we read an equa-

tion—simple or complicated—images form in the mind along with verbal re�ec-
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tions that suggest multiple metaphorical connections and associations with what

had been seen before.

Onemight say that a person’s knowledge is nomore than the

cerebral recollections of images and verbal re�ections. Like a walk in the woods, a

synthesis is born from all the past symbolic explorations of the collectivemathemat-

ics journey, a synthesis that issues in a process of abstraction. Here is what Langer

wrote back in :

[¿e power of understanding symbols] issues in an unconscious, spon-

taneous process of abstraction, which goes on all the time in the human

mind: a process of recognizing the concept in any con�guration given

to experience, and forming a conception accordingly.


Unlike visual conception, verbal re�ection needs a wee bit of conscious help to

overcome its impermanence so it can form meaning and be safely stored in long-

term memory. Again, here is Suzanne Langer:

No assignment of meaning is conventional, none is permanent beyond

the sound that passes; yet the brief association was a �ash of under-

standing. ¿e lasting e�ect is, like the �rst e�ect of speech on the de-

velopment of the mind, to make things conceivable rather than to store

up propositions.


Our unconscious involuntary thoughts interact with our conscious thoughts to

give meaning to our thinking. How could such meaning come, without indescrib-

able perceptions unconsciously suggested by sense experiences of the real world?

Although symbols and words help to form our thoughts and viewpoints, only sym-

bols can shape the complexities of communicable ideas into cohesive expressions.

Of course, words can do the same and are necessary to explain thoughts and ideas.

But because words must �eetingly deal with one thought at a time, they can quickly

fall into the cracks of confusion in the onslaught of oncoming words that are neces-

sary to complete the thought.¿ough symbols inmathematics are tightly de�ned by

the explaining words that de�ne them, they awake suggestive thoughts that would

not be directly intended by the words themselves.
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When it comes to algebra, visual conception is beyond any similarities in the

physical world.¿at’s okay; as we’ve noted, it’s not the job of mathematics to be con-

cernedwith the physical world, nor with what we call “reality.” Symbolic consistency

and meaning are essentials of mathematics. So is certainty. So is imagination. So is

the creative process. So is hypothesis. So is belief beyond experience. So is adven-

ture of knowledge. And, in today’s complexity, there is no better way to do the job

of mathematics than by symbolic envisagement.

¿ese days, mathematical representations come in all types. Some are iconic, in

that they resemble what they represent. Some are truly symbolic. And some are used

purely for indexical purposes. In her book Representation and Productive Ambiguity

in Mathematics and the Sciences, Emily Grosholz contends, “Which representations

we have at our disposal and how we combine them determines how we can formu-

late and solve problems, discern items and articulate procedures, supply evidence in

arguments and o�er explanations. And how the representations should be under-

stood, their import and meaning, must be referred to their use in a given tradition

of problem solving.”


At a recentmath conference in Boston, I designed a little experiment in symbolic

cognition that involved interviews of several colleagues, all professors of mathemat-

ics. It was hardly an acceptable scienti�c design. At the center of my laptop screen

was a symbolic expression involving a square root and a few squares. ¿e speci�c

expression is not important. (See appendix C for a transcript of an interview.) Each

interview started with me pointing to the screen of my laptop, asking: “What goes

through your mind when you see such a thing as this?” In each case, there was a

long pause, a er which I would tell the subject that there is no right or wrong an-

swer. ¿en, there would be a stab at an answer, usually some geometric argument

that had to do with the graph of the equation. “¿is might have something to do

with an ellipse,” was one attempt. “It’s a cone,” was another.

At one point, an obvious hint in the form of a new expression would fade in at

the top of the screen with two arrows pointing directly to the original equation. It
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would remain displayed for a full  seconds. ¿e subjects were looking directly at

the screen when, a er  seconds, the equation and arrows faded out.

I interviewed nine people this way; all but two tried to tie the question to the

graph of the equation in question. But a er the strange -second display of the

fading-in-and-out expression, two of my subjects got the same idea.

¿eir answers

were exactly what the hint had suggested, the solution to a general quadratic equa-

tion.¿ere was no verbal indication that either of the two subjects was aware of the

fade-in/fade-out equation on the screen. At the end, I asked each subject if anything

unusual was seen on the screen of my laptop while they were contemplating the

question. ¿eir eyes widened. Everyone, including the exceptional two, claimed to

have seen nothing fade in or out.

What would have happened had my laptop displayed the equation rhetorically

instead of symbolically? Inevitably, anyone would have translated the wording into

symbols. But if we were still living in Gerolamo Cardano’s mid-sixteenth-century

mathematicsworld, aworld thatwould have known the solution to a quadratic equa-

tion (as Brahmagupta had even as far back as the seventh century) expressed only

in words, would that association have come so quickly from a verbal description of

the hint that came from my fade-in-and-out equation?

Asking a question such as “What goes through your mind when. . . ?” the way

I did reminds us of how social science experiments were performed back in the

mid-twentieth century, when there were few mechanisms in place for measuring

responses. My sample size was so small, there was no real way to tally the frequen-

cies of the answers. Moreover, even if the sample size were far larger, the experi-

ment would have to take into account two of the modern notions of how recent

associations are yoked to immediate cerebral responses. We now know that we are

all subject to both the “priming e�ect” and the “anchoring e�ect,” two well-studied

subconscious supremacies that can manipulate our conscious reasoning.

¿e priming e�ect tells us that our actions and emotions are a�ected by our

experience of recent events. For instance, if you were asked to �ll in the blanks of

the word “S_ _P,” you would likely write “SOAP” if you had just washed your hands,
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and that you would likely write “SOUP” if you had just sat down for dinner. ¿ere

are also Freudian symbolic connections that claim that you would write “SOAP”

a er being asked to think of an action that brings you shame, Freudian in the sense

that the soap is a cleanser for the stained soul.


¿e anchoring e�ect is di�erent. It unconsciously locks us into a small range

of associative thoughts with a tendency to anchor our opinions to some immediate

bias. An experiment conducted by Tversky and Kahneman back in  asked sub-

jects to guess the percentage of African countries listed as members of the United

Nations. A wheel marked with numbers from  to  was spun. ¿e wheel would

come to rest at a number—say, X. ¿e subjects were asked to �rst indicate whether

X was higher or lower than the answer to the question. Following that, the subjects

were asked to estimate the value of the quantity by moving upward or downward

from that number. ¿e bizarre outcome was that, for the group that saw the wheel

land on , the median estimate of the percentage of African countries that were

members of the United Nations was , and, for the group that saw the wheel land

on , the median estimate was . ¿e actual answer is . What could a wheel of

fortune have to do with the number of countries belonging to the United Nations in

?

In asking a question such as “What goes through your mind when . . . ?” as an

experiment, we should understand that anchoring and priming will play signi�cant

roles in how responses will be biased by immediate associations. A subject who had

just been exposed to one kind of thought may be both primed by it and anchored to

it. However, I do believe that when reading mathematical symbols, priming and an-

choring may positively lead to new results. In reading mathematical symbols, prim-

ing and anchoring work together to constructively guide us through barrages of

competing associations that simultaneously beckon for some preferential attention.

Anchoring may lock us into immediately preceding thoughts, but that may be a

good thing when reading mathematics.

¿e cognitive psychologists Keith Stanovich and Richard West tell us that we

think on two levels, which they label “System ” and “System ” so as not to prejudice
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their experiments.

For now, I prefer to call them “auto mode” and “focus mode.”

Automode requires no e�ort andno sense of conscious control, whereas focusmode

means there is a controlled e�ort to keep the object of thought in focus.We can drive

a car along an empty highway listening to music and talking with a child who asks

what +  is.¿at takes no e�ort. When we read books such as the one you are now

reading, we are using both focus mode and automode.When we readmathematics,

nomatter how simple, we are using both.We use both in the sense that the focal can

have an e�ect on the auto. How’s that?

Christopher Chabris’s and Daniel Simons’s now famous “Invisible Gorilla” ex-

periment showed how the focus mode might interfere with the auto mode.

Exper-

iments in “inattentional blindness”—the failure to perceive a visible, unexpected

object while attention is focused on a task—are not new.

¿e latest are based on

auditory studies and their visual analogues that were conducted in the s and

s. Chabris’s and Simons’s Invisible Gorilla experiment is striking.With students

as actors, they made a one-minute �lm of two teams—one in white shirts, the other

in black—moving and passing a basketball. Subjects were asked to silently count the

number of passes made by the white-shirted players while ignoring any passes by

black-shirted players. Immediately a er the video ended, the subjects were to report

howmany passes they had counted. Halfway through the video, a female student in

a full-body gorilla suit walked across the court, stopped directly in front of the cam-

era, thumped her chest, and walked o�. At the end of the video, the subjects were

asked a series of questions:

Q: Did you notice anything unusual while you were doing the counting task?

A: No.

Q: Did you notice anything other than the players?

A: Well, there were some elevators, and S’s painted on the wall. I don’t know what

the S’s are for.

Q: Did you notice anyone other than the players?

A: No.
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Q: Did you notice a gorilla?

A: A what?!


About half of the subjects did not notice the gorilla! A gorilla thatwalked directly

through the center of the court! ¿e gorilla did not contribute to the task; hence,

there was a de�ciency of attention, and hence, the gorilla was invisible.

¿e experiment was not intended to tell us how the mind works when we are

doing mathematics; rather, it was to show that we may miss the unexpected during

calls for concentrated visual attention. Yet, in a limited sense, it does apply to math-

ematics. I knowmany mathematicians who, in deep thought over a problem, would

not be aware of a live gorilla in the room. Howmany times have I denied that I ever

heard something my wife told me?¿e gorilla might be in the room and I wouldn’t

know it, but should she walk across the problem I amworking on, she wouldn’t need

to thump on her chest for me to know she is there.

¿e Invisible Gorilla experiment applies only to inattentional blindness of un-

expected objects in visual �elds. What about gorillas in mathematical problems?

Return to the experiment I performed at the JointMeetings of the AmericanMathe-

matics Society and the AmericanMathematical Association. Two people saw some-

thing that reminded them of something they had seen before. What made two sub-

jects see something algebraic and seven subjects search for a graphical connection,

when all nine must have subconsciously witnessed the same hint? Perhaps it was

simply amatter ofmathematical brain type, as Poincaré would have put it. He wrote:

Among our students . . . some prefer to treat their problems “by analy-

sis,” others “by geometry.”¿e�rst are incapable of “seeing in space,” the

others are quickly tired of long calculations and become perplexed.


¿ere are answers to the question of why some people would immediately re-

sort to geometric daydreaming and others to analytic. ¿ere are, of course, many

works that attempt to understand the psychological and neuropsychological aspects

of intuition and the creative talents involved in understanding mathematical proof,

techniques, or computation—Hadamard and Poincaré in the early twentieth cen-

tury, Dubinsky and Polya in the twentieth century, and continuing with George
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Lako�, David Geary, Stanislas Dehaene, David Tall, and others in this century.


But experiments in cognitive neuroscience to �nd answers to the question of what

goes through the mind in reading a rhetorical statement as opposed to its symbolic

equivalent are just now in their delicate stages of infancy. I’m not talking about some

kind of phrenological pinpointing of mathematical thought in the brain, or some

GPS of the brain’s neurophysiological highways to localize mathematical thinking.

My question should not be so tough to answer, and yet it seems to be. It alsomay not

be of much interest to experimental psychologists. ¿e real di�culty with experi-

ments in mathematical cognition is that humans have too many distinct and imag-

inative thinking schemes to make analysis de�nitive and interesting. We all think

somewhat di�erently with brains that are exquisitely di�erent, using richly assorted

thinking styles that contribute to and account for the preciousness of being human.

¿e most interestingly close work on such a question comes from Stanislas De-

haene’s laboratory, the Cognitive Neuroimaging Unit at the CEA (Commissariat à

l’énergie atomique et aux énergies alternatives) in Paris. Dehaene and his students

used electroencephalographic techniques—under the idea that the brain activity

generates electric current—to study di�erences in brain activity between contem-

plations of numerals and words. ¿ey �ashed Indian numerals and number words

on a computer screen to �nd out how long it takes a brain to decide, withmillisecond

accuracy, that  is smaller than . A few surprises followed.

Volunteers were asked to press one key with the le hand for numbers smaller

than  and another with the right hand for numbers larger than .Minute changes in

scalp voltage generated by brain activity were recorded on a timeline ofmilliseconds

from sixty-four scalp electrodes.

For the �rst hundred or so milliseconds, electric

potential registered close to zero; then, a positive potential registered at the rear of

the scalp, suggesting that visual areas of the occipital lobe were activated. At this

stage, when visual actions engaged, Dehaene found no perceptible di�erence be-

tween Indian numerals and English number words. But then, suddenly, words such

as “four” began to generate negative potentials only in the le hemisphere, while

digits such as “” produced a potential in both hemispheres simultaneously.
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An entire single event ofmentally processing whether a number is greater or less

than —from number recognition to the motor response of pressing the selected

button—on average takes less than half a second. So what happens in the process?

At around milliseconds, a miscellany of specialized areas of the visual cortex be-

come active, presumably in recognizing the shape of the numerical symbol without

attributing any meaning. ¿en, at around  milliseconds, when it is assumed that

the numerical quantity is �rst being encoded, a di�erence in electrical potential am-

plitude was found between digits that were close to  and digits that were far from ;

presumably, digits that were far from  aremore easily distinguished as being greater

than or less than .

Now the �rst surprise: ¿ough number words generated a negative potential

only in the le hemisphere, and digit numerals produced currents in both hemi-

spheres, the electrical potential amplitudes were similar for both number words and

digit numerals. In other words, the inferior parietal region (a region attendant to

language and mathematical operations) seems to recognize the abstract magnitude

of numbers without regard to notation.

¿e second surprise came at the �rst micro-moment of the motor response, just

a er the number comparison was completed and the answer was ready—that is, be-

tween about  milliseconds from the time the digit or number word appeared on

the screen to about  milliseconds. At that instant, there appeared to be a dis-

tinct voltage di�erence between the right and le premotor and motor areas. When

a subject �rst prepared a right-hand response, the le -hemisphere electrodes indi-

cated a negative potential. Preparation for a le -hand response generated a negative

potential in the right hemisphere. ¿is suggests that it takes between a quarter and

a third of a second for the mind to recognize the shape of the digit or number word

and decipher its quantitative substance.

And then the third surprise: On average, it took another  milliseconds for the

�nger muscles to contract and to actually press a button. Even with a simple task

of trying to decide whether a number is less than  or greater then , people make

mistakes. When that happens, there is an immediate and intense negative potential
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at the frontal lobes—an area associated with controlling actions and inhibiting un-

wanted behavior—that suggests a mental attempt to correct the error. ¿is, which

happens at the astonishingly fast speed of less than  milliseconds a er pressing

the wrong button, is surprising because it shows that the reaction to the unintended

response is a psychodynamic one.

In Dehaene’s experiments, precise brain activity location was compromised by

the skull’s tendency to di�use electric potential. To pinpoint distinct regions where

electrical activities happen,more invasive procedures would have been needed, pro-

cedures involving electrodes implanted in the cortex itself. Such a procedure can be

done only under exceptional circumstances such as with patients su�ering from

debilitating seizures. ¿ose procedures of intracranial electrode probes were per-

formed at Yale by Truett Allison and Gregory McCarthy in  with results that

pinpoint two neighboring regions of the visual processing area of the brain: one re-

acted to words exclusively, the second only to Indian numerals, and a third only to

faces.


Dehaene, Allison, and McCarthy are not suggesting that the brain behaves in

some phrenological way. ¿ey know that even the simplest functions activate large

and distinct cerebral geography. ¿ey know that no one area of the brain can think

for itself. Although no single region of the brain can perform even the simplest

thinking task, there does seem to be, however, some concentration of electrical ac-

tivity for minute instants of specialized brain activity such as reading a word or per-

forming a calculation. Dehaene thinks of the brain as “a heterogeneous group of

dumb agents. Each is unable to accomplish much alone, but as a group they manage

to solve a problem by dividing it among themselves.”


No doubt, there is a di�erence between reading a phrase of words and reading a

symbolic mathematical phrase. For instance, the phrase “one added to four plus the

di�erence between three and two” is read di�erently than the phrase ((−)+)+.
¿e question of di�erence splits into two competing questions raised by Dehaene:



Does our comprehension of mathematical expressions come from our capacity for
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processing language structures? Or is it language-independent, relying on some vi-

sual system for parsing strings of mathematical symbols?

¿e answer narrows to whether mathematics is primarily visual-spatial, or

predominantly linguistic. ¿ere seems to be a di�erence in patients with severe

aphasia or dementia who retain the ability to comprehend simple symbolic algebra

problems.

Patients with lesions outside the language areas of the brain sometimes

have great di�culty conceptualizing Indian numerals and their correspondingword

equivalents.


Dehaene speci�cally investigated micro-ocular behavior of subjects processing

the expression +(−(+)) in order to study how the brain representsmathemati-
cal expressions with so-called nested embeddings, and how closely related symbolic

numerical computations with nested structures are to the parsing of equivalent lin-

guistic expressions.

In reading a sentence of text, we must be aware of punctuation within the sen-

tence before the actual reading. A “What” at the beginning of text does not always

indicate a question. EvenmyMicroso Word spellchecker insists that the preceding

sentence is a question.

Like question marks at the ends of sentences, nesting phrases within a sentence

requires the reader’s eyes to be slightly ahead of cognition. A sentence fromWilliam

Faulkner’s short story in Go Down Moses titled “¿e Bear” has us hanging till its

completion:

It was of the wilderness, the big woods, bigger and older than any re-

corded document—of white man fatuous enough to believe he had

bought any fragment of it, of Indian ruthless enough to pretend that

any fragment of it had been his to convey; bigger that Major de Spain

and the scrap he pretended to, knowing better; older than old ¿omas

Sutpen of whomMajor of Spain had had it and who knew better; older

even than old Ikkemotubbe, the Chickasaw chief, of whom old Sutpen

had had it and who knew better in his turn.
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Admittedly, a Faulkner sentence may not be a fair example of an English sen-

tence, as Faulkner o en tried to put the whole world into each sentence. But I spared

you.¿e story contains much harder sentences; there is another that is probably the

longest sentence (more than , words!) in American �ction. So indulge me, and

take amoment to read the sentence again. Parsing Faulkner’s sentence requires read-

ing quite a bit ahead of where the eye wants to go, and yet the sentencemakes perfect

sense as it is being read.

A mathematical expression such as

 �x +  �− + � −  + (x + ) + �� − �

is processed only a er the eye has scanned the expression in search of the most

inner nested sensible operation—namely, x+ .¿e full expression is not generally

read from le to right, though it may have been instantaneously scanned in that

direction.

Little is known about howpeople comprehendmathematical expressions. Lately,

there have been experiments involving functional magnetic resonance imaging

(fMRI) and magneto-encephalography (MEG) as well as electro-encephalography

(EEG) to measure the cognitive timeline of processing simple algebra and response

in symbol manipulation tasks—that is, to measure the brain location and speed of

processing very elementary mathematical expressions. In particular, Jared Danker

and John Anderson at Carnegie Mellon used fMRI and MEG imaging to study the

parsing speeds of subjects solving linear algebraic equations with three terms and

one unknown.

¿ey attempted to isolate activity in two regions of the brain: the

parietal cortex and the prefrontal cortex. ¿e main function of the parietal cortex,

which is located behind the frontal lobes and above the occipital lobes, is to integrate

sensual information—in particular, to integrate visually perceived data for sense of

space and navigation. ¿e prefrontal cortex (the anterior part of the frontal lobes)

lies just in front of the motor and premotor areas, and functions as an orchestrator

of complex cognitive behavior, choosing which to act on from con�icting thoughts

such as good and bad, same and di�erent.
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Using algebraic symbol manipulation tasks, Danker and Anderson examined

the two regions of the brain in a two-step cognitive process of equation solving,

isolating in time transformations of representations and memory retrieval of math-

ematical facts.¿e �rst involves the parietal cortex when visually received informa-

tion is processed and an image representation is transformed. ¿e second involves

the prefrontal cortex when it receives a transformed representation and brings in

the retrieval of mathematical facts that interact with the processed representation

of the problem. ¿is two-step process continues in a back and forth sequence. For

example, when the stimulus was to solve equations such as
x

+ = , the mathemat-

ical knowledge comes in a er the prefrontal cortex retrieves the di�erence − = ;
the parietal cortex transforms the equation and encodes it into

x

= ; the prefrontal

cortex takes that transformation to retrieve the multiplication fact  �  = ; and

�nally, the prefrontal cortex transforms the equation and encodes it to x = . Both
brain regions behave di�erently during each step, yet there is a strong interactional

relationship between retrieval and representation in mathematical thinking.


Anthony Jansen, KimMarriott, and Greg Yelland of Monash University studied

how experienced users of mathematics comprehend algebraic expressions.

¿ey

designed memory tasks to examine the role of mathematical syntax in encoding al-

gebraic expressions, and concluded that experienced users of mathematics had an

easier time identifying previously seen syntactically well-formed expressions than

ill-formed ones.¿ey found that the encoding of algebraic expressions is based pri-

marily on processes that occur beyond the level of visual processing. For example,

the well-formed string  − x is better recalled than ill-formed strings such as (x.
¿atmay not be as surprising as the fact that in the expression −x)y−, the −x

is better recalled than if it were seen in the expression  − x(y− ).
¿eMonash team later investigated howexperiencedusers ofmathematics parse

algebraic expressions by examining the order inwhich eyes scanned the symbols and

measuring the durations of ocular �xations.


In reading text, we tend to pause for a fewmilliseconds at the end of clauses and

sentences. ¿at seems perfectly natural; it conforms to the way we speak: a �ow of
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nouns, a verb or two along with modifying adjectives, adverbs and perhaps a pro-

noun, all coming from a capsulated constituent thought. We do this not just to help

the breathing in vocal communication, but also to convey the sentence structure as

an arrangement of word forms and their mutual relations within the sentence. We

might not expect the same reading schemewhen reading amathematical expression,

yet the Monash team found that we seem to do something similar when reading

mathematical expressions: symbols at the end of an arithmetic phrase were �xated

upon for signi�cantly longer than symbols at the start or middle of the phrase. ¿is

suggests that we “read” algebraic expressions by their syntax, just as we do when

processing sentences of natural language.

Dehaene’s experiment examined measured eye movements of mathematically

trained subjects while they computed nested arithmetical expressions such as  +
( − ( + )). ¿e eyes moved to the deepest nest, ( + ), and worked their way up
the nesting to complete the computation. In other words, the spotting of the deepest

nest was instantaneous with almost no reading of the expression from le to right,

as there would have been in a text form of the expression. It implies that the subjects

quickly parsed the initial string for syntax, relying on operator and parentheses as

cues before their eyes moved to the successive levels of the syntactic hierarchy, at

each step, recovering digit identities that were needed for calculation.

¿e subjects were young ( to  years old), having had a general mathematics

education at French universities. ¿e strings always used the four digits – along

with two plus signs, one minus sign, and two pairs of parentheses. ¿ere were four

levels of complexity, labeled –. ¿e highest level was , which exhibited a mathe-

matically valid string of terms such as ((−)+)+ . Level  was created by swap-
ping the outer parentheses and shu�ing the symbols outside them—for instance,

)( − ) + (+ would be one such string. Level  was created by swapping the in-
ner parentheses and shu�ing all the symbols outside them—that is, +)− (+)(.
Level  was a mathematical nonsense string created by a shu�ing of all terms—for

example,  − +))(+(.
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Dehaene’s team found that mathematically trained subjects were sensitive to the

complexity of mathematical expressions, that complexity e�ects were localized to

a set of cortical regions located outside of classical language areas, that the parsing

of mathematical expressions starts early on during visual processing, and that that

area relies heavily on the fusiform cortex, an area of the brain involved in identi-

fying words from shape-images, recognition of the visual world, as well as visual

identi�cation of well-formed mathematical strings.

It seems that particular notational con�gurations may help us recognize struc-

ture in mathematical expressions and process equations—for instance, inappropri-

ate spacing may lead to confusing spatial con�guration with syntactical structure,

as + �may lead to a di�erent answer than +�. So the early stage of process-
ing amathematical expressionmay bemore like the early stages of word processing;

both �rst identify the parts of the expression to determine if they are legal or not and

then go on to the stage of syntactic parsing.

¿erewas a timewhen even themost respected philologists believed that thoughts

happen only through language.

By language, those philologists meant words. One

of the great nineteenth-century German philologists MaxMüller claimed, “Wemay

feel the dark, but till we have a name for dark and are able to distinguish darkness as

what is not light, or light as what is not darkness, we are not in a state of knowledge,

we are only in a state of passive stupor.”

We have come a long way from that kind

of understanding. What about animal thought?
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Chapter 23

Mental Pictures

Years ago, during some summers onCapeCod, I would jog down a dirt road, passing

a giant German shepherd tethered by chain who would bark one long “grrrrrho�”

as I passed—just one. I would answer with a very quiet “whoof,” my “hello” in what

I thought might be dog language. A er a few days into the season, the dog stopped

“grrrrrho�ng,” and just watched me pass by.

What was going on in his head? He must have learned that it was me passing,

that I was friendly and that I could make sounds just like he could. So what was it in

his brain thatmade him think it wasme? Imean. . .he had to have some picture in his

brain’s memory bank to compare me to other things that pass each morning. . .no?

On my return jogs, the German shepherd looked at me from afar, as if waiting to

see me again. He did not bark. Aristotle asserted that thoughts could not happen

without images, so perhaps my canine friend was checking me out against his little

brain’s �le of picture thoughts. How else could he think?

Wittgenstein tells us, “Wemake to ourselves pictures of facts.”

For him, the pic-

ture is a model of what we take to be real. “¿e gramophone record, the musical

thought, the score, the waves of sound, all stand to one another in that pictorial

internal relation which holds between language and the world.”


When I think in words, those words are somehow being put into images, but

maybe not. ¿ere is a di�erence between listening to radio and watching television.

When I watch television, I see pictures. When I listen to radio, I make pictures.
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When I do math, reading symbols, or just multiplying two numbers together in my

head, I don’t really picture the numbers, yet I think I do. What’s going on?

It’s as if I am thinking in cloudy symbols, although I don’t really picture the

cloudy symbols.¿epictures are there, yet not there.When I try to picture a triangle,

I do not have a clear picture of a triangle, just a vague fuzzy image, or more of an

abstract representation of a triangle, some symbol that may not look exactly like a

triangle, but something that stands in for the triangle. Why shouldn’t that symbol

be the triangle itself? What better symbol could there be?

We are all di�erent. Some people are visual thinkers, others verbal, and still

others may have thinking schemes beyond description. Nineteenth-century philol-

ogists and psychologists professed as “a matter of fact and not of argument” that

thinking without verbal language was impossible.

We now know better. My

“grrrrrho�ng” friend may be thinking in smells.

¿e geneticist Francis Galton claimed that his thoughts almost never suggested

words, and when those rare moments did suggest words, they were nonsense words

like “the notes of a songmight accompany thought. It o en happens that a er being

hard at work, and having arrived at results that are perfectly clear and satisfactory

to myself, when I try to express them in language I feel that I must begin by putting

myself in quite another intellectual plane.”


As for words, the Frenchmathematician Jacques Hadamard claimed, as did Gal-

ton, that words are neither followed by thoughts, nor thoughts by words:

I insist thatwords are totally absent frommymindwhen I really think . . .

even a er reading or hearing a question, every word disappears at the

very moment I am beginning to think it over; words do not reappear

in my consciousness before I have accomplished or given up the re-

search . . . and I fully agreewith Schopenhauerwhenhewrites, “¿oughts

die the moment they are embodied by words.”


He goes on to say that this is also the case when he is thinking about algebraic

symbols. He tells us that he represents general ideas as categorical circles A and B,

such that if everything in A is in B then the circle A is imagined to be in B. If nothing
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in A is in B, then the two circles are distinct; there are no words involved, though it

is possible that just the thought of any circle requires an instantaneous �ash of the

word.

Just imagine trying to logicallymake sense of one of LewisCarroll’s charming

syllogisms that appeared in his symbolic logic book:

No kitten that loves �sh is unteachable.

No kitten without a tail will play with a gorilla.

Kittens with whiskers always love �sh.

No teachable kitten has green eyes.

Kittens that have no whiskers have no tails.


With a little work, we could construct a diagram of circles to untangle the syllogism.

Without the circles orwithout somehighly developed, nonverbal organizing scheme

to illustrate to the mind the logic of these �ve sentences, how long would it take to

conclude the logical consequence that “no green-eyed kittenwill playwith a gorilla”?

More revealing is Hadamard’s presentation of his mental pictures of the steps in

a proof that there are an unlimited number of prime numbers:

In considering the primes from  to , he saw just “a confused mass.”

When forming the product of primes  to —that is, ����—he

imagined “a point rather remote from the confused mass.”

When he increased that product by , to get ( �  �  �  � ) + , he
saw “a second point a little beyond the �rst.”

¿e number that he saw as a second point a little beyond the �rst, if not

a prime, must contain a prime divisor, and therefore must be a

prime larger than . ¿is he saw as “a point somewhere between

the confused mass and the �rst point.”


Michael Artin, my thesis advisor, would draw a squiggly �gure looking roughly

like

as if it were his initials, whenever he referred towhatmathematicians call an “abelian

variety.” It had no graphical signi�cance and certainly no resemblance to what an

abelian variety really is. But to this day, I see that squiggly in my mind whenever

I hear the words “abelian variety.” It is, in many ways, Hadamard’s confusing mass

with transparent vagueness and useful hooks.
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What is of interest here is that those representative points near and away from

the confused mass have no properties of divisibility and no elements of prime-ness,

just as Artin’s squiggly drawing had no resemblance to an algebraic variety. As such,

they play deceptive and fanciful roles in the conceptualizing process. So how does

such a vague representational scheme help the logical process that fully depends on

divisibility?¿oughHadamard’s images seemed to be devoid of divisor properties, it

provided amechanism for simultaneously viewing all the elements of the argument.

He needed it to give the problem a face with trait and con�guration, a character.

I have thought about this for some time, becauseHadamard’s answer is not satis-

factory.¿e in�nitude of prime numbers is one of the �rst real good proofs a young

mathematician learns. A truly gi ed young mathematician might prove it without

looking at someone else’s proof. ¿e �rst proof I learned was that the square root

of two is not rational; my second was that the prime numbers are in�nite. So let

me answer the question of what goes on in my mind when I rehash the proof that

the prime numbers are in�nite. ¿ough my mathematical mind is nowhere near as

sharp as Hadamard’s was, my thoughts are remarkably similar to his in only one

respect.

I too see the confused mass, as if it is just a jumble of things, as well as the

representative points far and near. One di�erence is that I may be a bit more of a

literal thinker and therefore have the actual symbols and peeking through the con-

fused mass. Youmight say that mymass does not appear to be so confused.When it

comes to the last step, looking for a prime divisor larger than , I see an actual num-

ber marked as a question mark somewhere between the confused mass and the �rst

point.¿e reason, I suppose, is that—unlike a point—a questionmarkmaymentally

hold a division property, whereas a point (for me) is more of a placeholder.

¿e proof that
º
 is irrational has a di�erent mental �avor. It is what is called

a proof by contradiction, and it goes like this: Assume
º
 is rational, so

º
 = p

q ,

where pand q are integers and q is not equal to zero. Also assume that pq is in lowest

terms, so that p and q cannot both be even numbers. Square both sides of that last

equality so that  = p

q . Multiply both sides by q

to show that p = q and therefore
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that p is an even number. Since p is even, it can be written as s, for some integer s.

Substitute s for p in the equality
º
 = p

q so that
º
 = s

q . Square both sides to get

 = s
q . ¿en simplify to get q = s, which means that q too must be even. ¿is

contradicts the assumption that pand q cannot both be even. QED.

Now here is what happens in my mind. I actually see the equation
º
 = p

q ,

as (I believe) anyone would. A er all, what else would be the point of a symbolic

equation?¿e squaring operation is also symbolic, but then I see, inmy literal mind,

a blob of many square numbers, starting with , , , , and , and ending with

a blur of higher squares such as , , and . It’s not as if the actual Indian

numerals appear, but rather as if I just know the numbers are there. As soon as the

equation is squared, the square root sign disappears and I suddenly see p in a circle

of points that represents all the even numbers. ¿e fact that p is even doesn’t come

into play.Mymind skips the step that links p being evenwith pbeing even. Perhaps

that is because I’ve used that connection so much in my life that I just don’t bother

to think about it; it has become part of my collected, undoubted knowledge.

Of course, the whole proof that
º
 is irrational has also become part of my

collected, undoubted knowledge—I have demonstrated it to freshmen thousands of

times. So why isn’t the proof itself imagined as a cloudy mass in the mind that could

be made clear when necessary? It is. Like everything else well learned and repeated:

some fringe-unconscious cloud may represent it as a sack containing everything

that relates or associates to that simple proof by contradiction. It is a cauldron of

forever-added perpetually simmering memories.

Who can know the inner thoughts or the inner struggles of a person’s thinking

schemes? It’s hard enough to know our own. We may be able to know the compo-

nents of the brain and their functions, what lights up red in an fMRI scan when

a subject hears joyful news, or what lights up blue in a PET scan when a subject

must make a risky decision. No matter how much we �nd out about the brain and

how it works, we get no closer to really knowing how an individual thinks. Isn’t that

wonderful?
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I used to ask my students how they thought of the alphabet, the seasons, or the

months of the year. Every student had a di�erent scheme. My alphabet is on a bal-

ance board centered at M. I suppose my last name has something to do with that.

As I scan �rst the letters to the le of M, the board is tipped down on the le ; once

my scan passes M, the board tips downward on the right. It’s as if I am on the board

weighing down the letters with my scanning. Perhaps I learned how to spell my last

name on a seesaw. But when I have to look up a word in the dictionary, or a name

in the telephone book (paper dictionaries and telephone books, that is), there are

no images. Strangely, I seem to know where I am and can zoom straight to the ap-

proximate place of the word or name before �ne-tuning to get to the exact right

place.

Months of the year are stranger still. On the ground is a great circle of tiles

marked with the names of the months. I am standing on the tile that is exactly six

months from the current month looking diametrically across the circle to that cur-

rent month. It doesn’t seem to matter whether I am standing on a tile six months

ahead or six months behind. I have no idea where that bizarre calendar scheme

comes from. None of my students have ever expressed their sense of calendar time

in that way.

From what I just said, it would seem that I think in letters and words. Not so.

¿e words—if there at all—are a fog in the mind; the whole thinking process

is so instantaneous that it is impossible to self-assess one’s own thinking process.

Words, pictures, or whatever else, may be part of the process, but they are like the

individual notes of a piano concerto—once the bar is played, the ear has moved on.
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Chapter 24

Conclusion

The words of language, as they are written or spoken, do not seem
to play any role in my mechanism of thought. The physical entities
which seem to serve as elements in thought are certain signs and
more or less clear images.

—Albert Einstein

We think in fuzzy pictures, cloudy symbols—there, yet not there—senses and im-

pressions that allow us to go about our daily business. In literature, the conscious

track has a lag time. Read Dostoyevsky’s Crime and Punishment and come to the

point when Raskolnikov crushes the old woman’s head with a swing of an ax. What

role does the ax play as we read further? Why did Dostoyevsky decide that the old

woman should be killed by an ax and not by a gun nor bludgeoned to death with a

poker? How would our psyches have responded if another weapon were used? ¿e

answer is in the skull bludgeoning. A skull smashing has connotations very di�erent

from a bruising to death. It leaves readers with contradictory emotions and clashing

images in the mind: a gruesomely bloody death, and a humane swi death.

Analogously, in mathematics too, we have expressions that lead to competing

perceptions, perhaps creating moods for the way we think. I have no way of show-

ing this. So I can only o�er my belief: that symbols have packaged teasers for un-

conscious suggestions playing in the background, while the mind rushes though

hundreds of speci�c cases, instantly searching for connections to all the other times

such an equation had been seen. Why not?¿e mathematics literature is �lled with

equations built from simple symbols.¿ose equations become symbols in their own
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right, o�ering powerful connections to the idea that something innocuous can occur

over and over again in seemingly unrelated �elds, sometimes relating the ephemeral

to the physical.

Almost all thinking is multiple-tracked, with one track being conscious and an-

other not. On one, there is plenty of action to keep the logic �owing. On another,

there is the unconscious memory of everything that had been exposed to previous

connections. And when more complicated equations are seen, a myriad of sympa-

thetic thoughts come into play that are capable of conveying meaning through sub-

conscious tracks that signal some connection to all those times the reader had seen

a deeper �t with experience, or a deeper subconscious thought �lled with creative

possibilities.

Usually, reading is both a cognitive and an emotional activity. We read past

words and phrases that may not consciously register as signi�cant symbols, yet we

�nd meaning at subliminal levels. We do not have to be aware of every word or

phrase we read in order to grasp meaning. Meaning in literature comes from asso-

ciative experiences. And so it is, at times, with reading mathematics and physics.

Unlike symbols in poetry, mathematical symbols begin as deliberate designs

created by mathematicians. ¿at does not stop symbols from performing the same

function that a poem would: to make connections between experience and the un-

known and to transfer metaphorical thoughts capable of conveying meaning.

As in poetry, there are archetypes in mathematics. If there are such things as

self-evident truths, then there probably are things we know about the world that

come with the human package at birth.

¿e s baby experiments of Robert Frantz, Marc Bornstein, Eleanor Gibson,

and other psychology researchers changed our impressions of how very young ba-

bies react to di�erent patterns. ¿ey found that babies as young as eight weeks were

already more interested in certain patterns than others. It was an exciting discov-

ery at that time because it gave us evidence that from a very young age we begin to

parse what we see in order to structure the world around us; infants are automati-

cally captured by speci�c real-world structured patterns that stimulate their young
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nervous systems. In other words, the infant’s interest behavior is directly controlled

by structures in the world he or she will live in. Deep structures dictate our be-

havior and connect the dual tracks of our reading and thinking, the conscious and

subconscious.

Plato’s dialogue Meno refers to this. ¿e dialogue is about whether or not virtue

can be taught. But it uses the argument that the soul is immortal. To prove it, Socrates

calls on a slave boy, an uneducated lad, for questioning. ¿rough a series of questions

andwithout help from anyone, Socratesmanages to have the slave boy reason out facts

about the Pythagorean theorem. Presumably, he was able to do this because he knew

those truths before his birth and that they could be recalled from a previous life.

¿is is close to what Freud called “the collective subconscious of human phy-

logeny.” Of course, Freud avoided the notion of soul. To him the soul is not spiri-

tual, but rather the collective unconscious of the entire human species—that is, the

unconscious memories passed from generation to generation through folklore, reli-

gion, and accumulated general knowledge about how to survive in a world of chang-

ing environment. ¿is is how we come to know that between two points there exists

a unique line, and that the presence of a serpent could mean death, the underworld,

sex, fertility, sickness, or healing.¿e serpent doesn’t appear in mathematics, except

in two cases that I know of where serpentine diagrams indicate how to pick out en-

tries on a grid. Yet, those self-evident truths that establish our axioms of arithmetic

and geometry come from the collective subconscious of human phylogeny, the roots

of inherited symbols.

Symbols transcend the medium of communication. ¿ey are ubiquitous in our

language, and play a sizable role (though perhaps not a central one) in mathemati-

cal imagery linking the conscious and subconscious, the familiar and unknown, to

give us cultural/emotional predispositions to meaning, all to enhance the creative

process.

¿e entire mathematical phrase between two points there exists a unique line is

no less a symbol than the �rst line of Frost’s “¿e Road Not Taken.” ¿ey are both

distinguished by dominant subconscious powers coming from the collective sub-
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conscious. ¿ough mathematical symbols are not generally found in the classical

catalogue of archetypical symbols coming from folklore backgrounds, the serpent,

the dove, the lion, and so on, they nevertheless encourage connections between the

unknown and the familiar. In physics, we have Maxwell’s equations: four interre-

lated equations that tell us how electric and magnetic �elds relate to charge density

and current density, and how they change with time. Like any great poem,Maxwell’s

equations tell us far more than what appears in the language. ¿ey form the basis

for all electrodynamics and optics, and even lead to creative thinking about relativity

and quantum mechanics.

In natural language, ordinary words describe what we see, think, or imagine.

¿ey have the power to create unfamiliar worlds and bring them into our imagina-

tion. Few special skills, other than those that come from being raised in a culture

with other people, are required for admission to those worlds. To get to them, all we

need is the experience of being human.

Mathematics is di�erent. It usually requires a skill, sometimes a talent, o en

years of uncommon experience. I say usually, because there are many highly suc-

cessful mathematicians and physicists who showed no apparent math aptitude at

their young ages.

¿ough mathematics tends to use a symbolic language that bun-

dles complexities of verbiage to simplify communication, it also draws on an aston-

ishingly quick mental process that unpacks the essentials for making sense. And,

like poetry, it uses a linguistic structure that enables readers to know the hidden

meanings and the verbally unimaginable.

Typical symbols used inmathematics are operationals, groupings, relations, con-

stants, variables, functions, matrices, vectors, and symbols used in set theory, logic,

number theory, probability, and statistics. Individual symbols may not have much

e�ect on a mathematician’s creative thinking, but in groups they acquire powerful

connections through similarity, association, identity, resemblance and repeated im-

agery. ¿ey may even create thoughts that are below awareness.

Whenever the form
»
x + y appears in an equation, themathematician “knows”

that it is representing a metric of some kind, possibly a distance in some coordi-
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nate system. It comes naturally from the Pythagorean theorem, which tells her that

the distance from a point with coordinates (a,b) to a point with coordinates (c,d)
is equal to

»
(c − a) + (d − b). In higher dimensions, the form could appear as

»
x + y + z, or as the square root of a sum of more than three squares. ¿e form

may not have come originally from any physical property, but the reader could in-

terpret it through a geometric model that encourages associations. For example, the

circle of radius R is given by the set of all coordinates (x, y) satisfying the equation
R =

»
x + y. It connects something ephemeral to a geometric image. Although

»
x + y is not generally found in the classical catalogue of archetype symbols with

subconscious powers coming from folklore, it nevertheless encourages connections

between the unknown and the familiar.

Some mathematical symbols begin as deliberate designs created to make con-

nections between experience and the unknown, and to purposely transfermetaphor-

ical thoughts capable of conveyingmeaning through analogy and resemblance.Oth-

ers may accidentally do the same. For example, to represent the “sum” of a large but

�nite number of numerical terms, we use a large sigmaP, the Greek “S” that has a
�nite number of discrete sharp corners (, depending on how one counts). It likely

comes from the Latin summae (“the sum of”). Andwhen summing an in�nite num-

ber of terms we use the S-shaped symbol R that is smooth and curved, suggestive

of an in�nite sum.

Meaning and understandingmay be deeply embedded in associations and simil-

itudes through experience and in the collective subconscious. Cultural predispo-

sitions of aesthetically persuasive symbols may play into our emotional apprecia-

tion of beauty, in mathematics as well as in poetry and art. Beauty in mathematics

though—the elegance of proof, simplicity of exposition, ingenuities, simpli�cation

of complexities, making sensible connections—is, in a large part, attributable to the

illuminating e�ciency of smart and tidy symbols.
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Appendix A

Leibniz’s Notation

Ignoring minor technicalities, we may appreciate Leibniz’s notation by taking the

example y = x. We see that the numerical values of ydepend on the values of x. If

we pick some speci�c number—say, —then we may look at the ratio

x − 
x −  .

¿e numerator factors neatly, so the ratio is really

(x − )(x + )
(x − ) .

At this point, we see that the denominator is the same as one of the factors of the

numerator. ¿erefore, in the end we can say that the ratio we started with is really

x+ , as long as x is not equal to . But there is nothing special about the number .
We could have done the same with any number—say, a. If we started with the ratio

x − a
x − a ,

we would have ended with x + a, as long as x is not equal to a. Now, here comes
the problem. We would like to know what happens to the ratio as x − a approaches
zero. We would like to know this because when x − a approaches zero, the ratio
tells us the rate at which x is changing as x changes when we get very close to a. Of

course, we cannot let x−a become zero, because otherwisewe could not perform the

necessary cancellation to get x + a. ¿e way around this is to look at what happens

when x − a approaches zero. ¿at forces x + a to approach a. Since a was chosen
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to be an arbitrary number, it doesn’t matter what a is; that means that the original

ratio

x − a
x − a

approaches a number that is really dependent just on a. It is what we call a function

of a.¿e symbol
dy
dx represents that function, and it is called the “derivative of ywith

respect to x.”

Why is
dy
dx such a good symbol? A er all, the end result is not necessarily a ratio

of two things. Our example ended up being a, not a ratio at all.

For most problems of physical phenomena, you �rst know something about the

rate of change of some function and then want to know the function itself—for ex-

ample, you might know that
dy
dx = x. Without questioning the unjusti�ed symbolic

manipulation, youwould—as every calculus student is told to—think of
dy
dx as a frac-

tion and multiply both sides by dx to get dy = xdx. How convenient. It turns out

that those strange little variables dx and dy actually do follow the rules of algebra

synthetically: if y is a function of x and in turn x is a function of t, then dy
dx

dx
dt =

dy
dt .

And if both x and y are functions of t, then

dy
dt
dx
dt

= dy
dx

.

¿is is a setup for Leibniz’s other brilliant symbol, the “integral.”¿e integral op-

erates on a function. For the sake of simplicity, once again we use an example—say,

y = x.¿e integral operating on ygives us the function that has yas a rate of change.

It turns out that if two functions are equal, then their integrals di�er by just

one constant number. ¿e integral symbol in this case is Rydx. So, if we take the
integral of both sides of the equation dy = xdx, we symbolically get Rdy = Rxdx.
¿e le side is asking for that function that has  as a rate of change with respect to

the variable y. ¿at must be just y itself. ¿e right side is asking for that function

that has x as a rate of change with respect to the variable x. ¿at turns out to be
x

.

¿erefore, y− x

= C, where C is some numerical constant.
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Appendix B

Newton’s Fluxion of xn

Let the Quantity x �ow uniformly, and let the Fluxion of xn be to be
found. In the same time that the Quantity x by �owing becomes x + o,
the Quantity xn will become x + oSn—that is, by the Method of In�nite

Series

xn + noxn− + nn − n


ooxn− +&c.

And the Augments

o and noxn− + nn − n


ooxn− +&c.

Are to one another as

 and nxn− + nn − n


oxn− +&c.

Now let those Augments vanish and their ultimate Ratio will be the

Ratio of  to nxn−; and therefore the Fluxion of the Quantity x is to the
Fluxion of the Quantity xn as  to nxn−.

Taken from John Harris’s  English translation of Isaac Newton’s Introductio ad

De Quadratura Curvarum.

Newton’s Fluxion of x
n
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Appendix C

Experiment

Here is a transcript of an interview designed as an experiment in symbolic cogni-

tion performed at the JointMeetings of the AmericanMathematical Society and the

Mathematical Association of America in Boston on January , .

At the center of my laptop screen was the following �gure:

¿
ÁÁÀ� y


�


+ z + y

.

¿e typical interview would go something like this:

Q: What goes through your mind when you see such a thing as this (pointing to the

screen of my laptop)?

A: Well. . . (Long pause).

Q: ¿ere’s no right or wrong answer. I just want to know how you are seeing this.

A: ¿ere’s a sum of squares under the radical [the square root sign], so this might

have something to do with an ellipse. . . .No, . . .wait. It’s a cone that has a hyperbolic

cross section in one direction and a parabola in another.

At this point, the equation x + bx + c =  would fade in at the top of the screen
with two arrows pointing downward to the center �gure. For a full  seconds, the

screen displayed:

x + bx + c = 

�
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�
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ¿
ÁÁÀ� y


�


+ z + y

.

¿esubjectswere looking directly at the screen,when, a er  seconds, the equa-

tion and arrows faded out.

I interviewed nine people this way; all but two tried to tie the question to the

graph of the equation in question. But a er the strange -second display of the

fading-in-and-out equation, two of my interviewees got the same idea. ¿e follow-

ing is in e�ect the transcript of one interview. ¿e other is virtually identical.

A: Hold on, maybe the x, y, and z are not variables.

¿ere was no verbal indication that they were aware of the fade-in/fade-out

equation on the page, but in each of the two interviews, the interviewee wrote

¿
ÁÁÀ�b


�


+ c + b


on a pad. It was as if the second interviewee had seen what the �rst had done.

Q: Mm-hmm. So what are you seeing now?

A: Looks something like . . . a solution to the general quadratic equation? Is it the

positive root of a quadratic equation?

Q: What do you think?

¿e subject wrote x + bx + c = .

A: No-no, . . . (rewriting the equation replacing +b with −b).

Rewriting the equation replacing the +c with −c, the subject continued to look
at the new equation, while I said nothing. Finally a er a fewmoments, he wrote x−
bx− c = .With a surety that made him continue, he �nally wrote x− yx−z = .
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Q: Nice!

A: (Eyes widening.) “¿ere, . . . this (pointing to the �gure at the center of the laptop

screen) is the positive value of x in the equation x − yx − z = .

I designed the problem to be harder than I should have by using a z rather than

a z. My purpose was to make the terms under the square root sign take the form of

an ellipse, just to complicate things. I could have just started with

¿
ÁÁÀ�b


�


+ c + b


instead of ¿
ÁÁÀ� y


�


+ z + y

,

but I thought that that would be a give away.

In the end, I asked each subject if he or she had seen anything unusual on the

screen of my laptop while they were contemplating the question. Everyone, includ-

ing the exceptional two, claimed to have seen nothing fade in or out.

Two people saw the

�b

�


+ something

under the radical, which reminded them of the form b − c that always appears
under a radical when trying to �nd the solution to an equation of the form x+bx+
c = . Graphically, the form ¿

ÁÁÀ�b

�


+ c

could also suggest a positive elliptical cone. What made two subjects see

¿
ÁÁÀ� y


�


+ z + y


as the solution to a quadratic equation and seven subjects search for a graphical

connection, when all ninemust have subconsciously imbibed the hinted connection

with x + bx + c = ?
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I cannot tell you in words how I process knowing that

¿
ÁÁÀ� y


�


+ z + y


is the positive root of the quadratic equation x+bx+ c = . I just see it through the
process of seeing that anything of the form

� y

�


+  � something

under a square root symbol reminds me of the form b − c and hence of the root
of x + bx + c = .
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Appendix D

Visualizing Complex
Numbers

Mark the complex number a+ ib as if it were a point in the Cartesian plane as (a,b).
In that way, all complex numbers that happen to be real numbers lie along the hor-

izontal line through (,), and all complex numbers that happen to be imaginary
numbers lie along the vertical line through (,) (�gure D.).

	  

(3,2) 

(-2,-2) 

(0,2)

(0,1)

(0,0)
) 

(0,-1) 

(0,-2)

(-1,0)(-2,0)(-3,0) (1,0) (2,0) (3,0)

FIGURE D.1 Visualizing complex numbers.

Every complex number is represented as a pair of numbers and pictured in this

plane. But why are we calling these numbers, when they seem to be pairs of num-
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bers?¿e answer is that they obey the rules of arithmetic for numbers. Add any two,

and you get a third: de�ne (a,b)+(c,d) as (a+c,b+d). [Notice that (a+c,b+d) is
the representative point of (a+ ib)+(c+ id), which is (a+c)+ i(b+d).]What about

multiplication?We de�ne the product of (a,b)with (c,d) to be (ac−bd,ad+bc).
[Notice that (ac−bd,ad+bc) is the representative point of (a+ ib)(c+ id), which
is (ac − bd) + i(ad + bc).] With these de�nitions of addition and multiplication,

all the laws of arithmetic are satis�ed without contradiction. But something inter-

esting happens when we look further. Multiplication has a meaning. Multiplication

by i is a -degree counterclockwise rotation. Multiplication by di is a -degree

counterclockwise rotation followed (or preceded) by a scaling factor of d.

All of this could have been said using notation that kept
º
− instead of the

new representative i, which has the same virtual meaning. But i isolates the concept

of rotation from the perception of root extraction, o�ering the mind a distinction

between an algebraic result and an extension of the idea of number.
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Appendix E

Quaternions

What William Rowand Hamilton realized was that he could write x + iy+ jz + kw
as if each term is independent of the others with the multiplication rule i = j =
k = i jk = − and that it would be represented as quadruples (x, y, z,w) with a
multiplication rule that obeyed all the laws of algebra except the commutative rule.

He would have to be content with the fact that i j = k, and ji = −k. He would
have to accept more than two square roots of −, in�nitely more! He would have to
accept that quadratic equations have more than two solutions. ¿ese are some of

the trade-o�s for extending numbers to a higher dimension beyond the complex.

¿e new system includes the complex numbers. Embedded is a three-dimensional

imaginary system represented by quaternions of the form iy+ jz + kw.
So what does multiplication by any of the i, j, k’s do in the three-dimensional

space? Rotate, we expect. How? If i, j, k denote three positive unit directions of the

mutually perpendicular axes in three-dimensional space, then multiplying j by i

rotates the entire three-dimensional space by  degrees, sending the i-axis to the

j-axis while holding the k-axis �xed. It tells us that three-dimensional space has

two distinct orientation models and that the physicist must decide which should

be conventional. In other words, should the grooves of woodscrews be designed

to enter wood by clockwise turning, or by counterclockwise turning? ¿e choice

is arbitrary, but convention favors clockwise. If you studied physics in college, you

may remember these rotations as the right-hand rule for the orientation of space,

an understanding that is elemental to both physics and mathematics.
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Unlike the complex numbers, the quaternions have no representation in a space

that we know and can visualize. ¿ey are not open to comfortable visualization by

those of us who are untrained to see in four dimensions. Yet we include them as

legitimate numbers in our generalized number system. ¿ey didn’t come to us by

way of geometry. ¿ey may have come as a result of symbolic representation. Now

they turn up in the most unexpected places. Had Euler not marked
º
− as i in

a memoir presented to the Academy at St. Petersburg in , had
º
− not been

published as i in  a er his death, had Gauss not made consistent use of i a er

, the quaternions might not have been discovered so soon in the history of the

subject to make their vital contributions to mathematical physics.
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Notes

Introduction
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. ¿e verb “to syncopate” as used in this book means to shorten a word by omit-

ting letters from its middle. It is a speci�c form of abbreviation, although most

abbreviations are not syncopations. In the middle of the nineteenth century,

the German G.H.F. Nesselman characterized the development of algebra nota-

tion by three stages, which he called rhetorical, syncopated, and symbolic—in

that order. For more about this, see JohnWesley Young,WilliamWells Denton,

and Ulysses Grant Mitchell, Lectures on Fundamental Concepts of Algebra and

Geometry (Norwood, MA: Norwood Press, ), .
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. MohammedBenMusa al-Khwārizmı̄,¿eAlgebra, trans. and ed. Frederic Rosen

(London: Oriental Translation Fund, ), –.

. I thank Fernando Gouvea for pointing this out to me.

Definitions

. Webster’s¿irdNew InternationalDictionary of the English LanguageUnabridged.

. Ibid.

Chapter 1: Curious Beginnings

. PiotrWojtal andKrzyszgof Sobxzyk, “Man andWoollyMammoth at theKrakow
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. Marc D. Hauser, NoamChomsky, andW. Tecumseh Fitch, “¿e Faculty of Lan-

guage: What Is It, Who Has It, and How Did It Evolve?” Science, vol. , no.

 () (): –. Michael Tomasello, Origin of Human Commu-

nication (Cambridge, MA: MIT Press ). ¿ere is a long-standing debate

on whether or not animals have language symbols that is both imperative and

declarative to signal a want for something such as food, hugs, or something be-
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yond, such as conversational exchange of information for its own sake. I do not
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Stuart Shanker, and Talbot Taylor, Apes, Language and the Human Mind (Ox-

ford, UK: Oxford University Press, ); and “Missing Links in the Evolution
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Ancient Times (Boston: Ginn & Co., ).
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. For the full �nger counting scheme, see James Gow, A Short History of Greek

Mathematics (Cambridge, UK: Cambridge University Press, ), .

. J. Wassmann and P. R. Dasen, “Yupno Number System and Counting,” Journal

of Cross-Cultural Psychology, vol. , no.  (): –.

. D. E. Smith, History of Mathematics (New York: Dover, ), .

. For further details and an interesting excursion into how �nger counting was

used by traders in di�erent cultures, see Karl Menninger, Number Words and

Number Symbols: A Cultural History of Numbers (New York: Dover, ), –

.

. ¿is works because ab = (a −  + b − ) �  + ( − a) � ( − b).
. ¿e reason for this comes from the algebraic identity ab = ((a−)+(b−))�

+ (a− )� (b− )+ . A similar method works for any two numbers but

gets more complicated because more than �ve �ngers may have to be raised on

each hand.¿e idea is to make use of the formula ab = ((a− c)+ (b− c))� c+
(a− c)� (b− c)+ c, where c is the amount the numbers should be reduced in
order to bring themultiplication down to amanageable number. Unfortunately,

larger numbers require knowing how to square c.

. D. E. Heath, History of Mathematics (New York: Dover, ), –.

. Brian Butterworth,What Counts: How Every Brain Is Hardwired forMath (New

York: Free Press, ).

. W. Pen�eld and T. Rasmussen,¿eCerebral Cortex ofMan (NewYork:Macmil-

lan, ).

Notes to Chapter 4 241



“Mazur” — // — : — page  — #

. ¿ere are only two known Roman abacuses. One is at the Cabinet des Mé-

dailles (Bibliothèque nationale de France) in Paris; the other is at the Museo
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indicate a half-ounce, a quarter-ounce, and a third of an ounce.

. See Charles Burnett, “¿e Abacus at Echternach in ca.  AD,” Sources and
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earliest extant Arabic book on Indian numerals

For further details, seeGeorges Ifrah,¿eUniversalHistory ofNumbers (New

York: Wiley, ), . Also see Abu Kamil, Principles of Hindu Reckoning,

trans. Martin Levey (Madison: University of Wisconsin, ), .
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. Robert of Chester’s Latin translation of the Algebra of al-Khowarizmi (New

York: Macmillan, ).

. For a comprehensive list of early translations of al-Khwārizmı̄’s Algebra, see

Albrecht Hee�er, “A Conceptual Analysis of Early Arabic Algebra,” in Unity of

Science in the Arabic Tradition, ed. Shahid Rahman, Tony Street, and Hassan

Tahiri (New York: Springer-Verlag, ), –.

. A thirteenth-century Latin translation is at the Cambridge University Library

under MS Ii, vi., r–v.

. Fibonacci, Liber abbaci, trans. L. E. Sigler (New York: Springer-Verlag, ),

.

. Charles Burnett, “Learning Indian Arithmetic in the Early¿irteenth Century,”

Boletín de la Asociación Matemática Venezolana, vol. IX, no.  (): .

. Otto Neugebaur, ¿e Exact Sciences in Antiquity (New York: Dover Publica-

tions, ), n.

Chapter 7: Liber Abbaci
. See pages , , , and  in Fibonacci, Liber abbaci.

. Ibid., .

. For more detail on this subject, see Charles Burnett, Numerals and Arithmetic

in the Middle Ages (Farnum, Surrey, UK: Ashgate, ), xi, –; or Charles

Burnett, “Fibonacci’s ‘Method of the Indians,’ ” Bollettino di Storia delle scienze

matematiche, vol.  ( [published ]): –.

. Burnett, “Learning Indian Arithmetic in the Early ¿irteenth Century,” .

. I am very grateful to Ra�aella Franci for pointing this out to me.

. Ra�aella Franci, “Trends in Fourteenth-Century Italian Algebra,” Oriens-

Occidens, vol.  (): –.

. Elisabetta Ulivi, “Benedetto da Firenze (–), unmaestro d’abbaco del xc

secolo. Con documenti inediti e con un’Appendice su abacisti e scuole d’abaco

a Firenze nei secoli xiii–xvi,” Bollettino di Storia delle Scienze Matematiche, no.

 (): –.
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. I do not knowpreciselywhen this bookwas discovered, but surely sometime be-

fore . Some popular books have attributed the discovery to Ra�aella Franci.

However, in my conversations with Franci, she claimed that the book was ac-

tually discovered by Arrighi.

. GinoArrighi, “MaestroUmbro (Sec. XIII) LiveroDeL’Abbecho (cod.  della

Biblioteca Riccardiana di Firenze),” Bollettino Della Deputazione Di Storia Pa-

tria Per L’Umbria, vol. LXXXVI (): –.

. Jens Høyrup, “Leonardo Fibonacci and Abbaco Culture: A Proposal to Invert

the Roles,” Revue d’histoire des mathèmatiques, vol.  (): –.

. Two other treatises written in Pisa in the early thirteenth century, now being

studied by Franci, might give clues to the contents and treatment of Fibonacci’s

lost Liber minoris guise. See Ra�aella Franci, “Leonardo Pisano e la trattatistica

dell’abaco in Italia nei secoli XIV e XV,” Bollettino di Storia delle scienze mate-

matiche, vol. , no.  (): –.

. Ibid., .

. I thank Ra�aella Franci for clarifying the debate on the in�uence of Fibonacci

on the spread of Indian numerals in Italy.

. From correspondence with Charles Burnett.

. Høyrup, “Leonardo Fibonacci and Abbaco Culture,” .

. A large number of manuscript copies of the Carmen de Algorismus are still

around, so we know it must have been popular. See James Andrew Corcoran,

Patrick John Ryan, and Edmond Francis Prendergast, “¿e Catholic Church

and the Gentle Science of Numbers,” American Catholic Quarterly Review, vol.

 (): .

. In the twel h century, the library of the Salem Abbey was one of the most im-

portant in Europe.

. Smith and Karpinski,¿e Hindu-Arabic Numerals, iii. Georges Ifrah,¿e Uni-

versal History of Numbers (New York: Wiley, ), –. A convenient an-

notated translation of the major part of Sacrobosco’s text can be found in A
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Source Book in Medieval Science, ed. E. Grant (Cambridge, MA: Harvard Uni-

versity Press ), –.

. A. L. Basham,¿eWonder¿atWas India: A Survey of the Culture of the Indian

Sub-Continent before the Coming of theMuslims (NewDelhi: Picador, India edi-

tion, ), .

. ¿omas F. Glick, Steven Livesey, and Faith Wallis, eds.,Medieval Science, Tech-

nology, andMedicine: An Encyclopedia (Routledge Encyclopedias of theMiddle

Ages) (Oxford, UK: Routledge, ), .

. Charles Burnett, “¿e Semantics of Indian Numerals in Arabic, Greek, and

Latin,” Journal of Indian Philosophy, vol.  (): –.

. Richard Lemay, “¿e Hispanic Origin of Our Present Numeral Forms,” in Via-

tor, vol. :Medieval and Renaissance Studies, ed. Henry Ansgar Kelly (Los An-

geles: University of California Press, ), –.

. El-Mas’údí,Meadows of Gold, vol. ., trans. Aloys Sprenger (London: Oriental

Translation Fund, ), .

. Ibid., .

. Clemênt Huart, A History of Arabic Literature (London: William Heinemann,

), .

. El-Mas’údí,Meadows of Gold, –.

. I’m told that the oldest surviving Indian numerals book, Livero del abbecho,

dates back to around , but I have not seen this book. It is listed in Warren

Van Egmond, Practical Mathematics in the Italian Renaissance: A Catalogue of

Italian Abbacus Manuscripts and Printed Books to  (Florence: Instituto e

Museo di Storia Della Scienza, ).

. George Peacock, “History of Arithmetic,” in Encyclopedia Metropolitana, ed.

Samuel Taylor Coleridge, London: (), –.

C. A. Bayly, Empire and Information: Intelligence Gathering and Social Com-

munication in India, – (Cambridge, UK: Cambridge University Press,

). Also in Kapil Raj, “Colonial Encounters and the Forging of New Knowl-
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edge and National Identities: Great Britain and India, –,” Osiris, vol.

 (Nature and Empire: Science and the Colonial Enterprise, ): –.

And Kapil Raj, Relocating Modern Science: Circulation and the Construction of

Scienti�c Knowledge in South Asia and Europe, th and th Centuries (Delhi:

Permanent Black, ).

Of course, other reasons should be taken in account as well, such as the fact

that Peacock could have only been in literate-in-English circles.

See the essay Charles Burnett, “IndianNumerals in theMediterranean Basin

in the Twel h Century, with Special Reference to the Eastern Forms,” in From

China to Paris:  Years’ Transmission of Mathematical Ideas (Boethius. Texte

undAbhandlungen zurGeschichte derMathematik und derNaturwissenscha en),

ed. Benno van Dalen, Joseph Dauben, Yvonne Dold-Semplonius, and Menso

Folkerts (Wiesbaden: Franz Steiner Verlag, ), –.

Chapter 8: Refuting Origins

. Michael Farquhar,ATreasury of Deception (NewYork: Penguin, ), –.

. Ken Alder, “History’s Greatest Forger: Science, Fiction, and Fraud along the

Seine,” Critical Inquiry, vol.  (Summer ): –.

. ¿eir arguments are partially documented in BNF Res-Z-/livres rares, at

the Bibliothèque nationale in France. (I have not seen the document.)

. Guillaume Libri, Histoire des science en Italie: depuis la renaissance des lettres

jusqu’à la �n du dix- septième siècle, vol.  (Paris: Jules Renouard, ), –.

. Mémoires et Communications, Comptes Rendus Hebdomadaires des Séances de

l’Académie des Sciences, vol.  (): –.

. Agathe Keller, at the University of Paris VII-CNRS, found  titles on the origin

of numbers and arithmetic published between  and , and believes the

list is not exhaustive.

. G. R. Kaye, “Notes on Indian Mathematics—Arithmetical Notations,” Journal

of the Asiatic Society of Bengal, n.s. vol. III , no.  (): –.
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. ¿e birch bark leaves are now in the Bodleian Library at Oxford (MS. Sansk. d.

), but are currently too fragile to be examined.

. G. R. Kaye, “Notes on Indian Mathematics,” .

. BibhutibhusanDatta, “Review:G. R.Kaye,¿eBakhshaliManuscript—AStudy

in Medieval Mathematics,” Bulletin of the American Mathematical Society, vol.

, no.  (): –. See alsoBibhutibhusanDatta, “¿eBakhhshaliManu-

script,” Bulletin of the Calcutta Mathematical Society, vol.  (): –.

. G. G. Joseph, ¿e Crest of the Peacock, Non-European Roots of Mathematics

(Princeton, NJ: Princeton University Press, ), –.

. ¿is is from a paper appearing in the archives of the Centre Pour la Communi-

cation Scienti�que, which does not appear to be a peer reviewed journal. Avail-

able at http://hal.archives-ouvertes.fr/docs/////PDF/PeacockAK.pdf

(accessed August , ).

. Benoy Kumar Sarkar, Hindu Achievements in the Exact Sciences (Ithaca, NY:

Cornell University Library [scanned from the  edition], ), –.

. G. R. Kaye, “Notes on Indian Mathematics,” –.

. Bibhutibhusan Datta, “¿e Bakhshali Manuscript,” –.

. Karl Menninger, Number Words and Number Symbols: A Cultural History of

Numbers (New York: Dover, ), .

. Charles Burnett, “Learning Indian Arithmetic in the Early¿irteenth Century,”

Boletín de la Asociación Matemática Venezolana, vol. IX, no.  (): –.

. Benno van Dalen, Joseph Dauben, Yvonne Dold-Samplonius, and Menso Fol-

kets, eds., China to Paris:  Years’ Transmission of Mathematical Ideas

(Boethius. Texte und Abhandlungen zur Geschichte der Mathematik und der

Naturwissenscha en) (Wiesbaden: Franz Steiner Verlag, ), .

. Menninger, Number Words and Number Symbols, .

. Orstein Ore, Number ¿eory and Its History (New York: Dover, ), .

. See G. F. Hill,¿eDevelopment of Arabic Numerals in Europe (Oxford, UK: Ox-

ford University Press, ), .
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Chapter 9: Sans Symbols

. See http://www.claymath.org/library/historical/euclid (accessed August ,

).

. Euclid, II, .

. Proclus,A Commentary on the First Book of Euclid’s Elements, trans. with intro-

duction and notes by Glenn R. Morrow (Princeton, NJ: Princeton University

Press, ).

. Stacy Schi�, Cleopatra: A Life (New York: Little Brown, ), –.

. Alberto Manguel, A History of Reading (New York: Penguin, ), .

. Sir ¿omas Heath, Diophantus of Alexandria: A Study in the History of Greek

Algebra (Cambridge, UK: Cambridge University Press, ), –.

. Ibid., –.

. Frederic Rosen,¿e Algebra of Mohammed Ben Musa, ed. and trans. Frederic

Rosen (London: Printed for theOriental Translation Fund, ), –. Also see

accessible version found in Florian Cajori,AHistory of Mathematical Notations

(New York: Dover, ), .

. Jens Høyrup, “Hesitating Progress—¿e Slow Development toward Algebraic

Symbolization in Abbacus and Related Manuscripts, ca.  to ca. ,” in

Philosophical Aspects of Symbolic Reasoning in EarlyModernMathematics, Stud-

ies in Logic, vol. , no. , ed. Albrecht Hee�er andMaarten VanDyck (London:

College Publications, ), –.

. By the quadratic formula, the solution is calculated as

x = 


�
¾

� 

�


− 

=  �
º
 − 

=  �
º


=  � 

=  or .

. Høyrup, “Hesitating Progress,” –.
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. Ibid.

. TobiasDantzig,Number:¿e Language of Science, ed. JosephMazur (NewYork:

Plume, ), . Jacob Klein argued that something was lost in the liberation.

See Jacob Klein, Greek Mathematical ¿ought and the Origin of Algebra (New

York: Dover, ).

Chapter 10: Diophantus’s Arithmetica
. Ian Stewart, Why Beauty Is Truth: A History of Symmetry (New York: Basic

Books, ), .

. We see this inArithmetica, bookV, problem : to �nd three numbers in geomet-

ical progression such that each when added to a given number gives a square.

He picks the given number to be  and is forced to solve x +  = . He

then says that it is absurd (ατοπον), because the  had better be some number

greater than .

. Sir ¿omas L. Heath, A History of Greek Mathematics, vol. II (Oxford, UK:

Clarendon, ), .

. L. D. Reynolds and N. G. Wilson, Scribes and Scholars: A Guide to the Trans-

mission of Greek and Latin Literature (Oxford, UK: Clarendon Press, ), .

. D’Arcy ¿ompson, “¿e S of Diophantus,” Transactions of the Royal Society of

Edinburgh, vol. XXXVIII, no.  (): –. Also see James Gow, History

of Greek Mathematics (Cambridge, UK: Cambridge University Press, ), ad-

denda, ix.

. Sir¿omas L. Heath,Diophantus of Alexandria: A Study in the History of Greek

Algebra (Cambridge, UK: Cambridge University Press, ), –.

. Note that these abbreviations are also the �rst syllables.

. D’Arcy¿ompson, “¿e S of Diophantus,” –.

. James Gow, History of Greek Mathematics, addenda,  footnote.

. E. A.Wallis Budge,EgyptianHieroglyphic Dictionary (White�sh,MT: Kessinger

Publishing, ).

. Heath, Diophantus of Alexandria, –.
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. Available at http://books.google.com/books?id=RLCAAAAcAAJ&printsec=

frontcover&source=gbs_ge_summary_r&cad=#v=onepage&q&f=false (ac-

cessed August , ).

. James Gow, History of Greek Mathematics, addenda,  footnote.

. ¿e oldest (Vat. gr. ) dates from the thirteenth century. ¿e others, from the

fourteenth, � eenth, and sixteenth centuries, are also in the Biblioteca Apos-

tolica Vaticana under Barb. gr. , Pal. gr. , Reg. gr. , Ross. , Urb. gr.

, Vat. gr. , Vat. gr. .

. ¿e translation can be found atQusta ibn Lukqa, trans.,¿eArabic Text of Books

IV to VII of Diophantus’s Arithmetika (Ann Arbor, MI: University Micro�lms,

).

. Now, thanks to Google e-Books, Bachet’s entire edition of Diophantus’s Arith-

metica may be viewed online at http://books.google.com/ebooks/reader?id=

RLCAAAAcAAJ&printsec=frontcover&output=reader (accessed August ,

).

. JohnW. Baldwin,¿e Scholastic Culture of the Middle Ages, – (Lexing-

ton, MA: D. C. Heath, ), .

. I suggest the translation of ars rei et census to be “the art and quality of ‘the

thing’ ”; I suspect that by rei, “the thing,” he must have meant “the unknown.”

. Heath, Diophantus of Alexandria, .

. Ibid., .

. Ibid., .

. Tannery, Paul, Dictionary of Scienti�c Biography (New York: Scribner, ),

–. Also see Sir ¿omas L. Heath, Diophantus of Alexandria, .

. ¿anks to European Cultural Heritage Online, the entire manuscript of Wil-

helmXylander’s translation of book maybe found at http://echo.mpiwg-berlin

.mpg.de/ECHOdocuViewfull?start=&viewMode=images&ws=.&mode=

imagepath&url=/mpiwg/online/permanent/library/WYH/pageimg&

pn= (accessed August , ).

. Marcianus  is appropriately at the Biblioteca Marciana in Venice.
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. In the Bachet translation, the characters are lowercase and the x-square is this

strange symbol: , but in other translations the symbols are in capitals.

. ¿iswas the notation that was used in Latin translations ofmany ancientmanu-

scripts from the mid-� eenth century to the mid-seventeenth century. See

W. W. Rouse Ball, A Short Account of the History of Mathematics (London:

Macmillan, ), .

. Bachet, Arithmetica, .

. Diophanti Alexandrini,Opera Omnia, vol. , ed. and trans. into Latin by Paulus

Tannery (Leipzig: B.G. Teubneri, ), xxxiv–xxxix.

. Diophanti Alexandrini, Opera Omnia, –.

. Bachet VI, problem . Also see Heath, A History of Greek Mathematics, ;

and Gow, History of Greek Mathematics, , for simple fractions.

. ¿is is James Gow’s translation in Gow,History of GreekMathematics, addenda,

. Heath has a more accurate translation in Heath,Diophantus of Alexandria,

: “Perhaps the subject will appear rather di�cult, inasmuch as it is not yet

familiar (beginners are, as a rule, too ready to despair of success); but you, with

the impulse of your enthusiasm and the bene�t of my teaching, will �nd it easy

to master; for eagerness to learn, when seconded by instruction, ensures rapid

progress.”

. We also appreciate the breakup of large numbers in groups of three by com-

mas. Such a scheme is found in Fibonacci’s Liber abbaci, although, rather than

commas, he uses things akin to paretheses to group the digits.
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Notice that in the Bachet translation, the symbols are all lowercase. Bachet talks

of Q.+N.+ as the translation of .

Chapter 11: The Great Art

. Encyclopaedia of theHistory of Science, Technology, andMedicine inNon-Western

Cultures, ed. Helaine Selin (Dordrecht: Kluwer Academic, ), .

. Mohammed Ben Musa al-Khwārizmı̄, ¿e Algebra of Mohammed Ben Musa,

ed. and trans. Frederic Rosen (London: J. Murray, ), .

. () ¿e fourteenth-century Vienna MS. (Codex Vindobonensis  Rec. 

XIV. .). ()¿e � eenth-century DresdenMS. (Codex Dresdensis C. ).

() ¿e sixteenth-century Columbia University MS. (Codex Universitatis Co-

lumbiae, MS X , Sch. , Q.)

. Charles Hutton,Mathematical and Philosophical Dictionary, vol.  (London: J.

Johnson, ), .

. Louis Charles Karpinski, Robert of Chester’s Latin Translation of the Algebra of

Al-Khwarizmi (New York: Macmillan, ), . ¿is book also has both Latin

and English translations.

. Ibid., .

. Ibid., .

Chapter 12: Symbol Infancy

. Samuel Johnson,Dictionary of the English Language, and An English Grammar,

th ed. (London: Revington, Payne, etc., ), .

. Michael SeanMahoney,¿eMathematical Career of Pierre de Fermat, –

(Princeton, NJ: Princeton University Press, ), .

. E. T. Bell,¿e Development of Mathematics (New York: Dover, ), .

. Ibid., .

. A. Djebbar, Enseignement et recherche mathématiques dans leMaghreb des XIIIe

–XIVe siècles (Paris: Université Paris-Sud, PublicationsMathématiques d’Orsay,

), –.
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. For details on how the substitution y = x− a

reduces the general cubic equation

to one with no quadratic term, see Paul J. Nahin, An Imaginary Tale: ¿e Story

of
º
− (Princeton, NJ: Princeton University Press, ), –.

. Formore of the story on the famous feud, see JohnDerbyshire,UnknownQuan-

tity: A Real and Imaginary History of Algebra (New York: Joseph Henry, ),

–.

. GirolamoCardano,ArsMagna or the Rules of Algebra, trans. T. RichardWitmer

(New York: Dover, ), .

. Ibid., .

. Albrecht Hee�er, “Negative Numbers as an Epistemic Di�cult Concept: Some

Lessons fromHistory,”Working paper, Center for Logic and Philosophy of Sci-

ence, Ghent University, . No year given.

. Ibid., .

. Cardano, Ars Magna or the Rules of Algebra, .

. Ibid.

. ErnstMach, Popular Scienti�c Lectures, trans.¿omas J.McCormack (Chicago:

Open Court, ), –.

Chapter 13: The Timid Symbol

. CodexGotting. Philos. , University of Göttingen.¿e author refers to himself

as Initius Alegbras.

. W.W. Rouse Ball,A Short Account of the History of Mathematics, London:Mac-

millan, ), . Ball claims that the cube root wasmarked as and the

fourth root as , but I could not �nd any such notation in Die Coss, other

than the notation . to indicate something very di�erent indeed. He also

claims the year of publication to be ; however, the only published edition I

could �nd—the one edited by Michael Stifel—is dated . Michael Stifel, Die

Coss Christo�e Ludol�s mit schönen Exempeln der Coss. Gedrückt durch Alexan-

drum Lutomyslensem (Königsberg, Prussia [now Kaliningrad, Russia], ).
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. Stifel, Die Coss Christo�e Ludol�s, folio .

. Ibid., folio .

. ¿is could also have come from the Latin word radix (“root”).

. Cajori, A History of Mathematical Notations, vol. I, –.

. Jens Høyrup, “Hesitating Progress—¿e Slow Development toward Algebraic

Symbolization in Abacus and Related Manuscripts, ca.  to ca. ,” Con-

ference paper of Philosophical Aspects of Symbolic Reasoning in Early Modern

Science and Mathematics, Ghent, – (August ): .

. Ibid., .

. Nicolas Chuquet, Renaissance Mathematician: A Study with Extensive Trans-

lation of Chuquet’s Mathematical Manuscript Completed in , ed. Graham

Flegg, Cynthia Hay, Barbara Moss (Dordtrecht: Reidel, ), .

. Ibid.

. ¿e copy of Summa that I saw is a translation into old Germanwith old spelling

and words packed so closely together that it is hardly readable. So I relied on

Florian Cajori’s A History of Mathematical Notations, vol. I (New York: Dover,

), .

. GBeaujouan, “¿ePlace ofNicolas Chuquet in a Typology of Fi eenthCentury

French Arithmetic,” in Mathematics from Manuscript to Print –, ed.

C. Hay (Oxford, UK: Oxford University Press, ), –. Also see B. Moss,

“Chuquet’s Mathematical Executor: Could Estienne de la Roche Have Changed

the History of Algebra?” in ibid., –.

. Cajori, A History of Mathematical Notations, vol. I, .

. ¿e idea of negative exponents can be found in JohnWallis,MathesisUniversalis

(Oxford, UK: Oxford, ), –. Isaac Newton perfected the idea of negative

exponents. Negative exponents occur in his “De quadratura Cervarum,” and

can be found in¿e Mathematical Papers of Isaac Newton, vol. VII, –,

ed. D. T. Whiteside (Cambridge, UK: Cambridge University Press, ), .

. W. W. Rouse Ball, A Short Account of the History of Mathematics (London:

Macmillan, ), .
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Chapter 14: Hierarchies of Dignity

. From the preface of Bombelli’s L’Algebra found in BarryMazur and Federica La

Nave, “Reading Bombelli,”¿eMathematical Intelligencer, vol. , no.  ():

–.

. Florian Cajoli claimed that he had communication from the Bolognian mathe-

matician Ettore Bortolotti that the equal sign was developed at Bologna “inde-

pendent of Robert Recorde and perhaps earlier.” See Florian Cajori, A History

of Mathematical Notations, vol. , .

. I searched through the entire L’Algebra to �nd hundreds of cases where the

words fa, faro, eguali, and eguale are used, but few instances where two expres-

sions were bound by the word equale, as it would have been used in saying

anything like “+ è eguale a .”

. Rafael Bombelli,L’Algebra, book II (Bologna:GiouanniRossi, ), .¿anks

to Biblioteca della Scuola Normale Superiore and Centro di Ricerca Matema-

tica Ennio De Giorgi, this can be found at http://mathematica.sns.it/opere//

(accessed August , ).

. William Shakespeare, Cymbeline, King of Britain, act IV, scene .

. Barry Mazur, Imagining Numbers: Particularly the Square Root of Minus Fi een

(New York: Farrar, Straus and Giroux, ), –.

. Florian Cajori, A History of Mathematical Notations, vol. II, .

. Ibid., 

Chapter 15: Vowels and Consonants

. François Viète, Opera mathematica (Leiden: Elzevir, ), .

. Note that the symbol π denoting the ratio of the circumference to the diameter

of a circle was an idea of William Jones, who used it for the �rst time in .

To �nd out more about the process, see Petr Beckmann, A History of Pi (New

York: St. Martins, ), –.

. In , an assemblage of Viète’s works was published and edited by Francisci
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van Schooten, the editor of Viète’s Opera, who included commentaries and

notes using the symbol
º

with a vinculum (overbar) that can be extended

over several terms. It is interesting to note that van Schooten got the formula

for ~π wrong when trying to translate Viète’s rhetorical description into sym-
bolic notation on page . It shows how easy it is tomakemistakeswhen trying

to interpret what words in a phrase mean.

. Occasionally Viète uses Recorde’s symbol for the equal sign. See Viète, Opera

mathematica, .

. Viète, Opera mathematica, . Available at http://books.google.com/ebooks/
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Brāhmasphut.asiddhānta (Correctly
Established Doctrine of Brahma), ,
–, , , , , , 

Brahmins, 

Brahmi number system, , , , 

Index 271



“Mazur” — // — : — page  — #

Braille, 

brain, , –

Breasted, James Henry, n

Bronocice pot, 

Bronze Age, 

Burnett, Charles, 

Butterworth, Brian,What Counts, 
Byzantium, 

Cajori, Florian, , , 

calculation books, 

calculus, , , , , –, , ,

–

caliphs, 

Caliph stories, 

Campbell, Joseph, 

Cantor, Moritz, 

Cardano, Gerolamo, , 

Ars Magna, , , –, , , 
Carroll, Lewis, 

“Jabberwocky,” 

Cartesian coordinate system, , –,



cathedral schools, , 

cave art, , 

Cave of El Castillo, Spain, 

CEA (Commissariat à l’énergie atomique et

aux énergies alternatives), 

Chabris, Christopher, 

Charlemagne, 

Chasles, Michel, , –

Chinese, –

and base ten positional number system,



and blank space as placeholder, 

and counting rods, –

and decimal-based place-value system,



and Hindu-Arabic system, 

and India, 

and knowledge of decimal system, 

and negative numbers, 

and numerical writing, 

and papermaking, 

pebble counting by, 

and Pythagorean theorem, 

and Silk Road, 

and zero, 

Chinese hanzi, 

Christians, 

Chuquet, Nicolas, , 

and polynomial notation, 

and roots, 

Triparty en la Science des Nombres, ,
–, 

Church, 

Church calendar, , 

circles, xiii–xiv, , , , , n

Codex Vigilanus, , , , , 
coe�cients, , , , , 

collective subconscious, , 

commerce, , –, , , –, , 

See alsomerchants/trade
commutative law, , , 

complex numbers, , , , , , ,

, –, , 

complex solutions, , 

Computus manuscript (¿orney Abbey), ,



conic sections, 

Conrad, Joseph, Heart of Darkness, xii
Constantinople, , –

constants, 

continuity, 

continuum, the, 

Copernicus, Nikolaus, De revolutionibus, 
cosa, , 

counting boards, , , 

and Computus manuscript, 

of Gerbert, –

Gerbertian abacus as, 

and medieval European merchants and

accountants, 

and Romans, , 

counting rods, –

cube roots, , , , , n

cubes, –, , 

and Bombelli, 

and Diophantus, , , 

extraction of, 

and geometry, 

cubic equations, –, , n

cubic polynomials, –, 

cuneiform tablets, –

curves, , –, , , , 

daiji, 

Danker, Jared, –

272 Index



“Mazur” — // — : — page  — #

Dantzig, Tobias, , , 

Dardi di Pisa (Jacopo), Aliabraa arbibra, ,


d’Arezzo, Guido, ix

Darius Vase, , 

debt, , , , 

decimal system, , , , , –, 

Dehaene, Stanislas, –, –

del Ferro, Scipio (Scipione de Floriano de

Geri del Ferro), –, , –

De Morgan, Augustus, , , 

dependent variables, 

derivatives, , –

Descartes, René, xvi, , , , 

and curves, , 

and equations, , , 

and �xed known quantities, , 

Geometry, , , , , –, ,
, 

and juxtaposition for multiplication, 

and letters, , , , 

and modern symbolic form, xvii

and notation, , , 

and numerical superscripts, 

and polynomials, , –

Dickinson, Emily, “A Narrow Fellow in the

Grass,” xii

Diderot, Denis, 

di�erential equations, 

dignità, , , 

See also exponents
Dinocrates, 

Diophantus of Alexandria, x, , , , ,



and abbreviations, , –

and addition, , 

and algebra, , –

Arithmetica, xv, , , –, –, 
Arithmetica (Marcianus ), 

Arithmetica (Matritensis ), , ,



Arithmetica (Parsinius ), , 
Arithmetica (Vat. gr. ), 
collection of like quantities in, 

copies of Arithmetica of, –
and cubes, , , 

and division, 

and equals, 

and equations, xv, , 

and al-Khwārizmı̄, 

and minus symbol, , –, –,

, 

and notation, xv, –, –

and Pappus, 

and plus sign, 

and powers, , , 

and squares, , , 

and subtraction, x, , 

and unknowns, x, xv, , , –, ,

, 

and Vatican Library, 

and Xylander, 

Dirichlet, Gustave-Peter Lejeune, , , 

distributive law, 

division, , 

and Chinese counting rods, , 

and Chinese mathematics, 

colon [:] to denote, , 

current symbol [/] for, , 

and Descartes, 

D for, , 

in Diophantus, 

and geometry, –

Leibnitz’s signs for, 

and Stifel, 

Dostoyevsky, Fyodor, Crime and
Punishment, 

dreams, –

Dubinsky, E., 

Dudicius, Andreas, 

dust boards, xvi, , , 

Early Han dynasty, 

Eastern Arabic, , , 

Echternach manuscript, 

Egyptians, x, 

calendar of, n

and hieratic, 

hieroglyphics of, , , , –, –, 

and Nile Valley, 

numerals of, 

pebble counting by, 

and Pythagorean theorem, 

star map calculations of, –

Einstein, Albert, , 

ellipses, , 

Epic of Gilgamesh,¿e, 
equality, , , 
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equality (continued)
and Descartes, 

symbols for, xvii, , , , 

equal sign, , 

and Leibniz, 

Recorde’s horizontal lines for, , –,

–, , 

equations, ix, , 

and Anthologia Palatina, 
cancellation of common factors in, 

and Cardano, 

and conic sections, 

and Descartes, , , 

and Diophantus, xv, , 

of �rst and second degree, 

homogeneous, 

and al-Khwārizmı̄, 

mental images and verbal re�ections on,

–

in Rhind (Ahmes) papyrus, 

simultaneous, –, 

symbolic operations on, x

symmetry in, 

unknown root of, 

equations, compound cubic, –

equations, cubic

and Bombelli, 

and Cardano, , 

equations, linear, xv

and Brahmagupta, 

and al-Khwārizmı̄, 

equations, quadratic, , , , , ,

, n

and Brahmagupta, 

and completing the square, 

geometry of, 

and al-Khwārizmı̄, , –

and negative numbers, 

equations, quartic, 

and Bombelli, 

and Cardano, 

Euclid, ix, , 

axiomatic logic of, 

and Descartes, 

Elements, xiv–xv, , , , 
Elements (MS D’Orville ), –, 

and Heron of Alexandria, 

and Indian numeral script, 

and pi, xiv

translation into Arabic, 

and Viète, –

and Xylander, 

Euclidean space, 

Eudemus of Rhodes, 

Eudoxus, 

Euler, Leonard, , –, , , , 

Elements of Algebra, 
Recueil des pieces qui ont remporte les pris
de l’academie royale des sciences, 

Euphrates River, 

Europe/West

arithmetic in, 

and Hindu-Arabic system of numerals,



ignorance of zero in, –

and Indian numerals, , –, –

and al-Khwārizmı̄, 

and place-value idea, 

and Roman numerals, 

exponents, , –

addition of, 

and Bombelli, –

and Chuquet, 

and Descartes, 

Index Plan for, , 

laws of, 

negative, , 

and numerical superscripts, 

positive integral, 

rational, 

and Stevin, 

symbols for, 

and Wallis, 

See also powers

Faulkner, William, “¿e Bear,” –

Fermat, Pierre de, , , , 

Ferrari, Lodovico, 

Fertile Crescent, 

Fibonacci, Leonardo, , 

and Arabic numbers, –, , 

and Hindu-Arabic numerals, , ,

–

and Indian numbers, –, –, 

Liber abbaci, , –, , –, ,
–, –, –, , , n

Liber minoris guise (Book in a Smaller
Sense), 
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and merchants, , 

and negative root, 

and nine Indian �gures, 

Practica geometria, 
and res, 

�nger bending, –, 

�nger counting, –

and Arabs, 

and design and evolution of number

symbols, 

and origins of Western system, 

�ngers

and motor cortex, 

and symbols for �rst three numbers, 

 (numeral)

batches of, 

morphography of, 

Florence

Statuto Dell’Arte di Cambio, –

�uents, 

�uxions, , 

folklore, , 

 (numeral)

morphography of, 

symbols for, 

four-dimensional number system, 

fractions, xvi, , –, , , 

Franci, Ra�aella, , 

Frantz, Robert, –

Freud, Sigmund, , , 

frogs, insect capture by, –

Frost, Robert, “¿e Road Not Taken,” 

functions

and Descartes, 

and Dirichlet, , 

and Leibniz, , –

fundamental theorem of algebra, , 

Galen, 

Galilei, Galileo, 

Galton, Francis, 

Gardthausen, Viktor Emil, 

Gauss, Carl Friedrich, , 

Gaussian distribution, xiv

Geary, David, 

Geng Shouchang, 

geometric analysis, –

geometric daydreaming, 

geometric demonstrations, 

geometric proofs, , –

geometric square, 

geometric theorems, 

geometry, , , , 

abstract, 

and algebra, xv, , , , , ,

–, –, , 

analytic, 

and Cardano, , , 

and completing the square, 

histories of, 

and al-Khwārizmı̄, ,

and modern mathematics, –

origins of, 

and polynomials higher than cubic,

–

proofs in, xv, 

of quadratic equation, 

and Viète, –

Gerbert d’Aurillac (Sylvester II), , –

Gerbertian abacus, , , , n

Gibbon, Edward, Decline and Fall of the
Roman Empire, 

Gibson, Eleanor, –

Gobar

SeeWestern Arabic (Gobar)

Gow, James, –, n

Greek alphabet, 

beta, 

delta, , , , , , n

and Diophantus, x, –, , 

gamma, 

kappa, , 

mu, , 

pi, xiii–xiv, , –, , n,

n, n, n

psi, 

and sequential number system, ,

–, 

sigma, , , , –, , 

Greek geographers, 

Greek geometers, 

Greek language

and translation, , 

Greeks, –, 

and acrophonic system, , , 

and algebra, 

and caliphs, 

and completing the square, 
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Greeks (continued)
and counting boards, , 

and Hebrew number system, 

ignorance of zero, 

and Kaplan, 

and medicine, 

pebble counting by, 

and place-value system, , 

preservation of literature of, , 

and universal truths, xiv–xv

Grosholz, Emily, Representation and
Productive Ambiguity inMathematics and
the Sciences, 

guilds, 

Gutenberg, Johannes, , 

Gwalior, , 

Hadamard, Jacques, , –, 

Hall, Calvin, 

Hamilton, William Rowand, , , 

Hammurabi, 

Han dynasty, 

Haroun al-Rashid, , , 

Harriot, ¿omas, , , , , 

Heath, ¿omas, , , , , , 

Diophantus of Alexandria, n
Hebrew/Hebrew number system, –, ,

, , 

Hérigone, Pierre, 

Cursus mathematicus, , , 
Heron of Alexandria, , , , 

Metrica, 
Hindu-Arabic numerals, , , 

and abbacists, 

and Abraham ben Ezra, 

and Chinese counting rods, 

and Chinese mathematics, , , 

decimal system, 

evolution of, 

and Fibonacci, , , –

and Gerbertian counting board, 

in Iberia and Provence, , 

and Johannes de Sacrobosco, 

and al-Khwārizmı̄, , , 

and Mas’údì, 

morphography of modern, 

and positional numerals, 

and West, 

See also Arabic numbers; Indian
numbers

Hindus, , –, 

Hmong story cloth, 

Hobbes, ¿omas, –, –

Hollar, Wenzel, 

Homer

Iliad, 
Odyssey, 

Hosaïn, 

House of Wisdom

See Bayt Ul-Hikma (House of Wisdom)

Høyrup, Jens, , , –, 

Hydruntius, Ioannes, 

Hypatia, , , 

hyperbolas, 

Hypsicles of Alexandria, 

Iamblichus, 

Ibn al-Banna, 

Ibn al-Qi i

Ta’rikh al-hukama (Chronology of the
Scholars), 

ibn al-Yasamin, , 

ibn Ishaq, Hunain, 

ideograms, 

images, –, –

imaginary numbers, , , –,

–

and Bombelli, 

and Euler, 

and symbol i, 

imaginary roots, 

imaginary solutions

and Cardano, , 

inattentional blindness, –

independent variable, 

Index Plan, for exponents, , 

India, 

and China, 

and al-Khwārizmı̄, 

libraries of, 

and Silk Road, 

Indian letters, 

Indian numbers, , –

and Alexander de Villa Dei, 

Arabic texts on, n

and Arabs, 
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arrival in Alexandria through Syria, 

and Euclid’s Elements, 
and Europeans, , , , –

and Fibonacci, , –, –, 

as forbidden, –

and al-Khwārizmı̄, –, 

nine, , , –, , , 

and Severus Sebokht, 

as standard, 

ten, 

transmission by Arabs, 

in West, –

and zero, 

See also Arabic numbers; Hindu-Arabic
numerals

Indians, , , –

and negative numbers, 

and place-value idea, 

and positional decimal notation, –

and positional notation, 

and Pythagorean theorem, 

Indic script, 

Indus culture, 

in�nitesimal, the, , –

in�nity, , 

integrals, 

inverse operations, 

Invisible Gorilla experiment, –

Iran, 

iron cross, 

irrational numbers, , 

Isidore of Seville, Etymologiae, 
Italians, , 

Italian vernacular, 

Italy, –, , , , 

Jansen, Anthony, –

Japanese kanji, 

Japanese system, –

Jews, 

Johannes de Sacrobosco, Algorismus, , 
Johannes Hispalensis (John Of Seville), 

Arithmeticae practicae in libro algorithms
(Book of Algorithms on Practical
Arithmetic), , 

Johnson, Samuel, Dictionary of the English
Language, 

Jones, William, , , n

Joseph, George Gheverghese,¿eCrest of the
Peacock, 

Jung, Carl, 

Kahneman, Daniel, 

kanji characters, –

Kanka, 

Kaplan, Robert,¿e Nothing ¿at Is, 
Karpinski, Louis Charles, , 

¿e Hindu-Arabic Numerals, 
Kaye, George Rusby, –

Kazakhstan, 

Keller, Agathe, , 

al-Khwārizmı̄, Abu Jafar Muhammad ibn

Musa, , 

¿e Algebra, xv–xvi, , , , , –,
–

Algebra et Almucabala, 
Algebra wa’l-muqabala, 
Algorism, , 
Al-Kitab al-mukhtasar � hi sab al-gabr
wa’l-muqabala, 

Arithmetic, 
and Bayt Ul-Hikma, 

¿e Book of Restoration and
Equalization, 

and Brahmagupta, , , , 

On the Calculation of the Indians, , 
On theCalculationwithHinduNumerals,
, 

collecting terms in, 

completing and balancing in, 

completing squares in, , 

and counting numbers, 

geometric proofs of, 

and Hindu-Arabic numerals, 

language of, xv–xvi

and Robert of Chester, 

and Sun Zi Suan Jing, 

Zı̄j al-Sindhind, 
King, Martin Luther, Jr., 

Knorr, Wilbur, 

known quantities, , , , , , ,

, 

kong, 

Lako�, George, –
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Lam, Lay Yong, 

Fleeting Footsteps, , 
land surveys, –, 

Langer, Suzanne,AnEssay onHumanFeeling,
–

Laplace, Pierre Simon, –

Larsa, 

Latin cross, 

Latin grammar, 

latitudes and longitudes, –

Leibniz, Gottfried Wilhelm, , , , ,

–, , –, n

and functions, , –

and integrals, 

and Newton, , 

signs for multiplication and division, 

Lemay, Richard, 

lemma, xii

Leonardo da Vinci, 

Lettvin, Jerry, 

liberal arts, 

libraries, –

Libri Carucci dalla Sommaja, Guglielmo,

Histoire des sciences en Italie, 
Libro di nuovi conti (¿e Book of New

Calculations), 
limits, modern concept of, n

Lipstropius, Daniel, 

literature

mathematical writing as predating, –

Liu Hui, 

Livero de l’abbecho (Book of the Abacus),
–

Lucensis, Simon Simonius, 

Mach, Ernst, , , 

maestri d’abbaco, , , 

Maghrebian mathematicians, 

al-Mamun, 

Mandela, Nelson, 

Mansûr, Abû Ja’far, Caliph (al-Mansur),

–

Marriott, Kim, –

Mas’údì (Abu’l-Hasan ‘Ali),Meadows of Gold
and Mines of Gems, –, –, 

matrix system, –

Maxwell, James Clerk, 

Mayan system, –

Mazur, Barry, 

Imagining Numbers, 
McCarthy, Gregory, 

Menaechmus, 

merchants/trade, 

and Abraham ben Ezra, 

and counting rods, 

and Fibonacci, , , , , , 

and �nger bending, –

and Indian numerals, , , 

and al-Khwārizmı̄, 

and maestri d’abbaco, 

in Southern Mesopotamia, –

See also commerce
Mesopotamia, –

metaphor, xiii, , , , 

Metrodorus, 

minuscule script, , 

minus symbol, 

as arrow facing upward or down, x,

–, –, , 

and Bombelli, 

and Brahmagupta, 

and Cardano, 

and Diophantus, , –, –, ,



and Euclid, 

and Hérigone, 

as horizontal line, , , , , 

m for, , 

standardization of, 

and Stifel, , 

and Viète, 

See also subtraction
monads, , 

Monastery of St. Martin, Albelda, 

monastery schools, , 

monastic manuscripts, 

Morocco, 

Mozart, Wolfgang Amadeus, 

Müller, Johannes (Regiomontanus), 

Müller, Max, 

multiplication, , 

and Babylonians, 

and Boethius, 

and Bombelli, 

and Chinese mathematics, 

and Chinese rod system, , 

and Descartes, 

dot for, 

278 Index



“Mazur” — // — : — page  — #

and �nger computation, 

and geometry, , –

and Harriot, 

and juxtaposition, , 

Leibnitz’s signs for, 

and marking schemes, 

M for, , 

origin of symbol for, 

rules of signs for, –

sign for, 

St. Andrews cross as symbol of, , ,



and Stifel, 

symbols for, 

Napier, John, 

negative numbers, , , 

and Bakhshâlî manuscript, x

and Brahmagupta, , , , , , 

and Cardano, , 

in China, 

and Chuquet, 

distinguished by dot, xvi

and Indians, 

and al-Khwārizmı̄, , 

and Scipio del Ferro, 

square roots of, , , , 

negative roots, , , 

negative terms, 

Neolithic Age, , 

Nesselman, G.H.F., n

nested expressions, , , 

Neugebauer, Otto, 

New Guinea, 

Newton, Isaac, , , , , , , , ,

–, , n

New York Mercantile Exchange, 

Nicholas V, 

Nile Valley, 

Nine Chapters on the Mathematical Art,¿e
(Jiuzhang suanshu), , , 

nine numerals, 

and Chinese, , 

and Fibonacci, , , –, , ,

–, 

forms of, 

and Mas’údì, 

morphographics/forms of, –

and Severus Sebokht, 

Nippur tablet, –

Nordby, Vernon, 

notation

and Archimedes, 

and Chuquet, 

and Descartes, , 

Descartes’s standardization of, 

and Diophantus, xv, –, –

and Hérigone, 

and Pacioli, 

and al-Qalasādi, 

and Rudol�, –

and Stifel, 

and symbols, xi–xii

syncopated, xv

syncoptic, 

numbers, , , 

as abstract, , 

acrophonic, , , 

Arabic words for, 

and Babylonians, , –

and Bakhshâlî Manuscript, 

and Chinese mathematics, 

concept of, –

and cuneiform, –

earliest written occurrence of, –

and Egyptian hieroglyphics, –

and Greeks, , –

and Kaye, 

large, , , , , , , , , , ,

n

as marks, 

meaning of, 

morphography of modern, , –

as one-to-one counters, 

as pictures of objects, –

positional, 

and Roman system, , 

in superscripts, 

symbols for �rst three, 

ten, , 

and Vedas, 

whole, 

written as words, , 

number theory, 

operations, , , 

Oresme, Nicole, –, 

Otto III, 
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Ottoman Empire, 

Oughtred, William, –, , 

Clavis mathematicae, , , n

Paci�c islands, 

Pacioli, Luca Bartolomeo de, , 

Alghebra e Almucabala, , 
L’Arte Magiore, 
Summa, –

Pakistan, 

Panares, 

Paolo de l’Abacco, 

Pappus, 

parabolas, , 

pebble markings, –

Peirce, Benjamin, n

Pen�eld, Wilder, 

perpendicular, symbol for, , 

Perron, Cardinal, 

Persia, , , 

Philo, 

Phoenician alphabet, ix, , –

physics, xviii, , 

pictograms, , , , 

pictorial symbols, 

pictorial writing, –

placeholder, , , , , 

zero as, , , , , –, , –

place-value, , 

and Abraham ben Ezra, , 

of Babylonians, 

and Bakhshâlî Manuscript, 

and Brahmi system, 

and Chinese, , 

and counting boards, 

and European merchants and

accountants, 

and Gerbertian abacus, 

and Johannes Hispalensis, 

and Kaye, 

and Roman numerals, –

and Sanskrit words for numbers, 

Platina, Bartolomeo, 

Plato, –, , 

Academy of, , 

Meno, 
Plimpton, George Arthur, 

plus

and Bombelli, 

and Euclid, 

p for, 

signs for, 

and Viète, 

plus sign, xi, , 

and Bakhshâlî Manuscript, x

and Diophantus, 

and Stifel, , 

and Viète, 

and Widmann, 

See also addition
Plutarch, 

poetry, , 

Poincaré, Jules Henri, 

Polya, George, 

polynomials, –, , n

and Bombelli, , 

and Chuquet, 

and Descartes, , –

equation of degree one or two, 

factoring of, 

and fundamental theorem of algebra, 

and Harriot, , 

higher than cubic, –

and Leibniz, 

quadratic, 

roots of, , , 

set equal to zero, , 

and Stevin, , 

and unknowns, 

and Viète, 

written in letters, 

positional notation, , –

positive numbers, x, , 

and Bombelli, 

and Brahmagupta, , , 

and Cardano, , 

and quadratic equations, 

powers, 

and Bombelli, 

and Chuquet, 

Dardi di Pisa’s abbreviation for fourth,



and Descartes, 

and Diophantus, , , 

as geometrical word for Euclid, 

individual ranked numerically, 

and Pacioli, –

products of, 
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symbols for, 

in¿orney Abbey Computus manu-

script, 

and Viète, 

See also exponents
prime numbers, , 

priming e�ect, –

Proclus, A Commentary on the First Book of
Euclid’s Elements, 

proofs

and algebra, –

beauty of, 

and Chinese mathematics, 

and cognition, –, –

and Descartes, 

and Euclid, , , 

and fundamental theorem of algebra, 

geometric, , , 

in geometry, xv

and Greeks, 

and Hobbes, 

and al-Khwārizmı̄, 

in mathematics, xviii, 

proportions, 

psychological development, –

Ptolemy, 

Ptolemy I, 

Punjab, 

Pythagoras, , , n

Pythagoreans, , , 

Pythagorean theorem, ix, , , , , ,

, 

Pythagorean triples, 

Qalasādi, al-, Al-Tabsira �’lm al-hisab
(Clari�cation of the Science of Arithmetic),


Qin Shi Huang, 

quadrivium, , 

quaternions, , , –

radicand, 

radix, , , , , 

See also square roots
rainbows, –

Ramus, Petrus (Pierre de la Ramée), 

Arithmétique, 
Twenty Seven Books of Geometry, 

rational numbers, , , , 

real numbers, , , , , , , 

reciprocals, 

Recorde, Robert, xvi, , , 

Whetstone of Witte, , , –
records, , , 

rectangles, –

Reisch, Gregor,Mararita Philosophica, 
res, and Fibonacci, 

res(x), 

rhetoric

See words
Rhind (Ahmes) papyrus, , , –

right triangles, 

Robert of Chester, , , 

Almucabala, 
Robson, Eleanor, 

Roche, Estienne de la, 

Rolle, Michel, Traité d’Algèbre, 
Roman letters

written in digital order, 

Roman numerals, –, , 

and Arabs, 

and Europeans, 

and Fibonacci, , 

and Gerbertian abacus, 

ignorance of zero, 

and place-value system, –

Romans

and abacus, –, , n

counting boards of, , , 

and modern symbol for in�nity, 

roots

and Chuquet, –, 

and Descartes, –

extraction of, , –, , 

fourth, 

negative, , , 

and Pacioli, –

of polynomials, , , 

and Rudol�, , 

and Stevin, 

symbol for, 

unknown, 

See also cube roots; imaginary roots;
square roots

Rousseau, Jean-Jacques,¿e Social Contract,


Rudol�, Christo�, , , 

Die Coss, , –, –
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Russell, Bertrand, 

Sachs, Abraham, 

Salem Abbey, Germany, 

sand reckonings, 

sand tables, 

San Martín de Albelda (Benedictine

monastery), 

Sanskrit, 

Devanagari script of, –, 

Sarton, George, 

Schubert, Gotthilf Heinrich von, 

science, , , 

scribes, , 

Senkereh, 

Severus Sebokht, , 

sexagesimal (base ) system, , , 

Shakespeare, William, 

Shang dynasty, 

Shelley, Percy Bysshe, Prometheus Unbound,


sifr, 

Silk Road, 

Simons, Daniel, 

Sindhi, 

Sindhind (¿e Revolving Ages), 
Sixtus IV, 

Smith, David Eugene, , 

¿e Hindu-Arabic Numerals, 
Smith, D. E., 

snake diagram, xii–xiii

snake lemma, xii–xiii

Southern Mesopotamia, 

South Paci�c languages, 

space, –, 

Spain, , , 

square roots, , –, 

abbreviations for, xvi

and Brahmagupta, xvi, , , 

and Chinese rod system, 

and Chuquet, , 

extraction of, 

and geometry, 

in�nite sum of nested, 

and al-Khwārizmı̄, 

negative, 

of negative numbers, , , , 

nested, , 

notation for, 

Rudol� ’s symbol for, , 

symbol for, –, , 

See also radix
squares, –, , –

abbreviations for, xvi

and Bombelli, 

and Brahmagupta, xvi, 

and Dardi di Pisa, 

in Diophantus, , , 

and Euclid, 

and geometry, 

and al-Khwārizmı̄, 

of the square, 

Stanovich, Keith, –

stars, –

Stephan the Clerk, 

Stevin, Simon, xvi, , , , , 

L’Arithmetique, 
Stewart, Ian, 

Stifel, Michael (Ste�eius), 

Arithmetica Integra, , 
edition of Rudol� ’sDie Coss, , –,
–

Stirling, James, 

Suan shu shu (A Book on Numbers and
Computations), 

subtraction, , 

arrow-like �gure for, x

and Brahmagupta, 

and Chinese counting rods, 

and Diophantus, x, , 

and �nger bending, 

and geometry, , 

hieroglyphics for, x

and Romans system, –

See alsominus symbol
sutras, 

Sumerians, , , , 

sunya, 

Sun Zi Suan Jing (¿eMathematical Classic of
Master Sun), , 

superscripts, , –, , , , , 

surfaces and volumes, 

symbols, ix, 

as aid to transcend ambiguities and

misinterpretations, xvi, –

algebra as art of manipulating, –

algebraic, 

archetypical, , 
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as blank background, –

and Bombelli, 

and complexities of communicable

ideas, 

concealed meanings of, , 

and de�nition, –

de�nition of, xix

and Descartes, , 

and Diophantus, –, –

and dreams, –

etymology of, xi

and Euclid, , 

expertise in, –

as facilitating thought, 

and Freudianism, 

gains from, x

and general form of particular

statements, xvi–xvii, 

and grasp of general through particular,

xix

and Hérigone, 

inherited, 

and al-Khwārizmı̄, –

Langer on, 

and Leibniz, , –

as liberating thought from words, 

limits and conceptional powers of, 

literary, xii

in mathematics vs. from experiential

senses, –

and meaning, x–xi

and nonphysical objects, xviii

and notation, xi–xii

and Oughtred, 

as packages of complex information to

facilitate understanding, xii

play of conscious and unconscious

activity of, –

and priming and anchoring, 

and al-Qalasādi, 
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